cAMP can be either mitogenic or anti-mitogenic, depending on the cell type. We demonstrated previously that cAMP inhibited the proliferation of normal renal epithelial cells and stimulated the proliferation of cells derived from the cysts of polycystic kidney disease (PKD) patients. The protein products of the genes causing PKD, polycystin-1 and polycystin-2, are thought to regulate intracellular calcium levels, suggesting that abnormal polycystin function may affect calcium signaling and thus cause a switch to the cAMP growth-stimulated phenotype. To test this hypothesis, we disrupted intracellular calcium mobilization by treating immortalized mouse M-1 collecting duct cells and primary cultures of human kidney epithelial cells with calcium channel blockers and by lowering extracellular calcium with EGTA. Calcium restriction for 3-5 h converted both cell types from a normal cAMP growth-inhibited phenotype to an abnormal cAMP growth-stimulated phenotype, characteristic of PKD. In M-1 cells, we showed that calcium restriction was associated with an elevation in B-Raf protein levels and cAMP-stimulated, Ras-dependent activation of B-Raf and ERK. Moreover, the activity of Akt, a negative regulator of B-Raf, was decreased by calcium restriction. Inhibition of Akt or phosphatidylinositol 3-kinase also allowed cAMP-dependent activation of B-Raf and ERK in normal calcium. These results suggest that calcium restriction causes an inhibition of the phosphatidylinositol 3-kinase/Akt pathway, which relieves the inhibition of B-Raf to allow the cAMP growth-stimulated phenotypic switch. Finally, M-1 cells stably overexpressing an inducible polycystin-1 C-terminal cytosolic tail construct were shown to exhibit a cAMP growth-stimulated phenotype involving B-Raf and ERK activation, which was reversed by the calcium ionophore A23187. We conclude that disruption of calcium mobilization in cells that are normally growthinhibited by cAMP can derepress the B-Raf/ERK pathway, thus converting these cells to a phenotype that is growth-stimulated by cAMP.
We examined the osteoblast/osteocyte expression and function of polycystin-1 (PC1), a transmembrane protein that is a component of the polycystin-2 (PC2)-ciliary mechano-sensor complex in renal epithelial cells. We found that MC3T3-E1 osteoblasts and MLO-Y4 osteocytes express transcripts for PC1, PC2, and the ciliary proteins Tg737 and Kif3a. Immunohistochemical analysis detected cilia-like structures in MC3T3-E1 osteoblastic and MLO-Y4 osteocyte-like cell lines as well as primary osteocytes and osteoblasts from calvaria. Pkd1 m1Bei mice have inactivating missense mutations of Pkd1 gene that encode PC1. Pkd1 m1Bei homozygous mutant mice demonstrated delayed endochondral and intramembranous bone formation, whereas heterozygous Pkd1 m1Bei mutant mice had osteopenia caused by reduced osteoblastic function. Heterozygous and homozygous Pkd1 m1Bei mutant mice displayed a gene dose-dependent decrease in the expression of Runx2 and osteoblastrelated genes. In addition, overexpression of constitutively active PC1 C-terminal constructs in MC3T3-E1 osteoblasts resulted in an increase in Runx2 P1 promoter activity and endogenous Runx2 expression as well as an increase in osteoblast differentiation markers. Conversely, osteoblasts derived from Pkd1 m1Bei homozygous mutant mice had significant reductions in endogenous Runx2 expression, osteoblastic markers, and differentiation capacity ex vivo. Co-expression of constitutively active PC1 C-terminal construct into Pkd1 m1Bei homozygous osteoblasts was sufficient to normalize Runx2 P1 promoter activity. These findings are consistent with a possible functional role of cilia and PC1 in anabolic signaling in osteoblasts/osteocytes.
Functional analysis of polycystin-1, the product of the gene most frequently mutated in autosomal dominant polycystic kidney disease, has revealed that this protein is involved in the regulation of diverse signaling pathways such as the activation of the transcription factor AP-1 and modulation of Wnt signaling. However, the initial steps involved in the activation of such cascades have remained unclear. We demonstrated previously that the C-terminal cytosolic tail of polycystin-1 binds and activates heterotrimeric G proteins in vitro. To test if polycystin-1 can activate cellular signaling cascades via heterotrimeric G protein subunits, polycystin-1 Cterminal tail-mediated c-Jun N-terminal kinase (JNK) and AP-1 activities were assayed in transiently transfected 293T cells in the presence of dominant-negative, G protein inhibiting constructs, and in the presence of cotransfected G␣ subunits. The results showed that polycystin-1-mediated JNK/AP-1 activation is mediated by G␣ and G␥ subunits. Polycystin-1-mediated AP-1 activity could be significantly augmented by cotransfected G␣ i , G␣ q , and G␣ 12/13 subunits, suggesting that polycystin-1 can couple with and activate several heterotrimeric G protein families.
These results suggest that cAMP can stimulate fluid secretion early in renal tubule development during the time when renal cysts first appear in PKD kidneys and that PKD-deficient renal tubules are predisposed to abnormally increased cyst expansion in response to elevated levels of cAMP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.