Highlights d Two-photon optogenetics in VR enables targeted manipulation of place cell ensembles d Activating specific place cell ensembles drives their spatially associated behavior d Place cell stimulation inhibits endogenous place code expression and triggers remapping d Direct evidence for a causal role of place cells in spatial navigation
Summary Information processing in the brain depends on the integration of synaptic input distributed throughout neuronal dendrites. Dendritic integration is a hierarchical process, proposed to be equivalent to integration by a multilayer network, potentially endowing single neurons with substantial computational power. However, whether neurons can learn to harness dendritic properties to realize this potential is unknown. Here, we develop a learning rule from dendritic cable theory and use it to investigate the processing capacity of a detailed pyramidal neuron model. We show that computations using spatial or temporal features of synaptic input patterns can be learned, and even synergistically combined, to solve a canonical nonlinear feature-binding problem. The voltage dependence of the learning rule drives coactive synapses to engage dendritic nonlinearities, whereas spike-timing dependence shapes the time course of subthreshold potentials. Dendritic input-output relationships can therefore be flexibly tuned through synaptic plasticity, allowing optimal implementation of nonlinear functions by single neurons.
BackgroundNormal brain function depends on the development of appropriate patterns of neural connections. A critical role in guiding axons to their targets during neural development is played by neuronal growth cones. These have a complex and rapidly changing morphology; however, a quantitative understanding of this morphology, its dynamics and how these are related to growth cone movement, is lacking.ResultsHere we use eigenshape analysis (principal components analysis in shape space) to uncover the set of five to six basic shape modes that capture the most variance in growth cone form. By analysing how the projections of growth cones onto these principal modes evolve in time, we found that growth cone shape oscillates with a mean period of 30 min. The variability of oscillation periods and strengths between different growth cones was correlated with their forward movement, such that growth cones with strong, fast shape oscillations tended to extend faster. A simple computational model of growth cone shape dynamics based on dynamic microtubule instability was able to reproduce quantitatively both the mean and variance of oscillation periods seen experimentally, suggesting that the principal driver of growth cone shape oscillations may be intrinsic periodicity in cytoskeletal rearrangements.ConclusionsIntrinsically driven shape oscillations are an important component of growth cone shape dynamics. More generally, eigenshape analysis has the potential to provide new quantitative information about differences in growth cone behaviour in different conditions.
Many biological processes rely on the ability of cells to measure local ligand concentration. However, such measurements are constrained by noise arising from diffusion and the stochastic nature of receptor–ligand interactions. It is thus critical to understand how accurately, in principle, concentration measurements can be made. Previous theoretical work has mostly investigated this in 3D under the simplifying assumption of an unbounded domain of diffusion, but many biological problems involve 2D concentration measurement in bounded domains, for which diffusion behaves quite differently. Here we present a theory of the precision of chemosensation that covers bounded domains of any dimensionality. We find that the quality of chemosensation in lower dimensions is controlled by domain size, suggesting a general principle applicable to many biological systems. Applying the theory to biological problems in 2D shows that diffusion-limited signalling is an efficient mechanism on time scales consistent with behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.