Although leucine has many positive effects on metabolism in multiple tissues, elevated levels of this amino acid and the other branched-chain amino acids (BCAAs) and their metabolites are implicated in obesity and insulin resistance. While some controversies exist about the direct effect of leucine on insulin action in skeletal muscle, little is known about the direct effect of BCAA metabolites. Here, we first showed that the inhibitory effect of leucine on insulin-stimulated glucose transport in L6 myotubes was dampened when other amino acids were present, due in part to a 140% stimulation of basal glucose transport (P < 0.05). Importantly, we also showed that α-ketoisocaproic acid (KIC), an obligatory metabolite of leucine, stimulated mTORC1 signaling but suppressed insulin-stimulated glucose transport (-34%, P < 0.05) in an mTORC1-dependent manner. The effect of KIC on insulin-stimulated glucose transport was abrogated in cells depleted of branched-chain aminotransferase 2 (BCAT2), the enzyme that catalyzes the reversible transamination of KIC to leucine. We conclude that although KIC can modulate muscle glucose metabolism, this effect is likely a result of its transamination back to leucine. Therefore, limiting the availability of leucine, rather than those of its metabolites, to skeletal muscle may be more critical in the management of insulin resistance and its sequelae.
The mechanistic (mammalian) target of rapamycin complex 1 (mTORC1) signaling is vital for optimal muscle mass and function. Although the significance of mTORC1 in stimulating muscle growth is unequivocal, evidence in support of its role during muscle regeneration is less clear. Here, we showed that the abundance (protein and mRNA) of the mTORC1/S6K1 substrate, programmed cell death protein 4 (PDCD4), is upregulated at the onset of differentiation of L6 and C2C12 cells. The increase in PDCD4 was not associated with any changes in S6K1 activation, but the abundance of beta transducing repeat‐containing protein (β‐TrCP), the ubiquitin ligase that targets PDCD4 for degradation, increased. Myoblasts lacking PDCD4 showed impaired myotube formation and had markedly low levels of MHC‐1. Analysis of poly (ADP‐ribose) Polymerase (PARP), caspase 7 and caspase 3 indicated reduced apoptosis in PDCD4‐deficient cells. Our data demonstrate a role for PDCD4 in muscle cell formation and suggest that interventions that target this protein may hold promise for managing conditions associated with impaired myotube formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.