Ultrathin, lightweight, and flexible aligned single-walled carbon nanotube (SWCNT) films are fabricated by a facile, environmentally friendly, and scalable printing methodology. The aligned pattern and outstanding intrinsic properties render “metal-like” thermal conductivity of the SWCNT films, as well as excellent mechanical strength, flexibility, and hydrophobicity. Further, the aligned cellular microstructure promotes the electromagnetic interference (EMI) shielding ability of the SWCNTs, leading to excellent shielding effectiveness (SE) of ~ 39 to 90 dB despite a density of only ~ 0.6 g cm−3 at thicknesses of merely 1.5–24 µm, respectively. An ultrahigh thickness-specific SE of 25 693 dB mm−1 and an unprecedented normalized specific SE of 428 222 dB cm2 g−1 are accomplished by the freestanding SWCNT films, significantly surpassing previously reported shielding materials. In addition to an EMI SE greater than 54 dB in an ultra-broadband frequency range of around 400 GHz, the films demonstrate excellent EMI shielding stability and reliability when subjected to mechanical deformation, chemical (acid/alkali/organic solvent) corrosion, and high-/low-temperature environments. The novel printed SWCNT films offer significant potential for practical applications in the aerospace, defense, precision components, and smart wearable electronics industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.