Background
Many traits and diseases are thought to be driven by >1 gene (polygenic). Polygenic risk scores (PRS) hence expand on genome-wide association studies by taking multiple genes into account when risk models are built. However, PRS only considers the additive effect of individual genes but not epistatic interactions or the combination of individual and interacting drivers. While evidence of epistatic interactions ais found in small datasets, large datasets have not been processed yet owing to the high computational complexity of the search for epistatic interactions.
Findings
We have developed VariantSpark, a distributed machine learning framework able to perform association analysis for complex phenotypes that are polygenic and potentially involve a large number of epistatic interactions. Efficient multi-layer parallelization allows VariantSpark to scale to the whole genome of population-scale datasets with 100,000,000 genomic variants and 100,000 samples.
Conclusions
Compared with traditional monogenic genome-wide association studies, VariantSpark better identifies genomic variants associated with complex phenotypes. VariantSpark is 3.6 times faster than ReForeSt and the only method able to scale to ultra-high-dimensional genomic data in a manageable time.
Complex genetic diseases may be modulated by a large number of epistatic interactions affecting a polygenic phenotype. Identifying these interactions is difficult due to computational complexity, especially in the case of higher-order interactions where more than two genomic variants are involved. In this paper, we present BitEpi, a fast and accurate method to test all possible combinations of up to four bi-allelic variants (i.e. Single Nucleotide Variant or SNV for short). BitEpi introduces a novel bitwise algorithm that is 1.7 and 56 times faster for 3-SNV and 4-SNV search, than established software. The novel entropy statistic used in BitEpi is 44% more accurate to identify interactive SNVs, incorporating a p-value-based significance testing. We demonstrate BitEpi on real world data of 4900 samples and 87,000 SNPs. We also present EpiExplorer to visualize the potentially large number of individual and interacting SNVs in an interactive Cytoscape graph. EpiExplorer uses various visual elements to facilitate the discovery of true biological events in a complex polygenic environment.
Motivation: Higher-order epistatic interactions can be the driver for complex genetic diseases. An exhaustive search is the most accurate method for identifying interactive SNPs. While there is a fast bitwise algorithm for pairwise exhaustive searching (BOOST), higher-order exhaustive searching has yet to be efficiently optimized. Results: In this paper, we introduce BitEpi, a program to detect and visualize higher-order epistatic interactions using an exhaustive search. BitEpi introduces a novel bitwise algorithm that can perform higher-order analysis more quickly and is the first bitwise algorithm to search for 4-SNP interactions. Furthermore, BitEpi increases detection accuracy by using a novel entropy-based power analysis. BitEpi visualizes significant interactions in a publication-ready interactive graph. BitEpi is 56 times faster than MDR for 4-SNP searching and is up to 1.33 and 2.09 times more accurate than BOOST and MPI3SNP respectively.
The demands on machine learning methods to cater for ultra high dimensional datasets, datasets with millions of features, have been increasing in domains like life sciences and the Internet of Things (IoT). While Random Forests are suitable for "wide" datasets, current implementations such as Google's PLANET lack the ability to scale to such dimensions. Recent improvements by Yggdrasil begin to address these limitations but do not extend to Random Forest. This paper introduces CursedForest, a novel Random Forest implementation on top of Apache Spark and part of the VariantSpark platform, which parallelises processing of all nodes over the entire forest. CursedForest is 9 and up to 89 times faster than Google's PLANET and Yggdrasil , respectively, and is the first method capable of scaling to millions of features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.