Recently, TDP-43 was identified as a key component of ubiquitinated aggregates in amyotrophic lateral sclerosis (ALS), an adult-onset neurological disorder that leads to the degeneration of motor neurons. Here we report eight missense mutations in nine individuals--six from individuals with sporadic ALS (SALS) and three from those with familial ALS (FALS)--and a concurring increase of a smaller TDP-43 product. These findings further corroborate that TDP-43 is involved in ALS pathogenesis.
Mitogen-Activated Protein Kinase (MAPK) cascades play central roles in innate immune signaling networks in plants and animals1,2. In plants, however, the molecular mechanisms of how signal perception is transduced to MAPK activation remain elusive1. We report that pathogen-secreted proteases activate a previously unknown signaling pathway in Arabidopsis thaliana involving the Gα, Gβ and Gγ subunits of heterotrimeric G-protein complexes, which function upstream of a MAPK cascade. In this pathway, Receptor for Activated C Kinase 1 (RACK1) functions as a novel scaffold that binds to the Gβ subunit as well as to all three tiers of the MAPK cascade, thereby linking upstream G protein signaling to downstream activation of a MAPK cascade. The protease-G protein-RACK1-MAPK cascade modules identified in these studies are distinct from previously described plant immune signaling pathways such as the one elicited by bacterial flagellin, in which G proteins function downstream of or in parallel to a MAPK cascade without the involvement of the RACK1 scaffolding protein. The discovery of the novel protease-mediated immune signaling pathway described here was facilitated by the use of the broad host range, opportunistic bacterial pathogen Pseudomonas aeruginosa. The ability of P. aeruginosa to infect both plants and animals makes it an excellent model to identify novel types of immunoregulatory strategies that account for its niche adaptation to diverse host tissues and immune systems.
Abstract-Phenanthrene (PHE) undergoes a significant increase in toxicity after exposure to simulated or natural sunlight in aqueous media, coincident with the appearance of PHE photoproducts. To investigate whether the primary photoproduct of PHE, 9,10-phenanthrenequinone (PHEQ), contributes to the increased hazards of solutions containing photomodified PHE, toxicity assays were conducted using the marine bacteria Photobacterium phosphoreum and the aquatic plant Lemna gibba (duckweed). Photobacterium phosphoreum was exposed to PHE, PHEQ, a photomodified PHE mixture containing known amounts of PHE and PHEQ (pmPHE), and a mixture mimicking the amounts of PHE and PHEQ in the pmPHE mixture. The bacteria were found to be equally sensitive to PHE in simulated solar radiation (SSR, a light source with a visible light : UVA : UVB ratio similar to that of sunlight) or darkness, with an EC50 of 0.53 mg/L. In both darkness or SSR, solutions containing PHEQ (with or without PHE) all exhibited an EC50 of 0.06 to 0.10 mg/L based on PHEQ concentrations, indicating that PHEQ was the primary active component of the pmPHE mixture. Lemna gibba was tested in SSR and visible light with PHE, PHEQ, and the pmPHE mixture. The calculated EC50 for PHE was 3.5 mg/L in SSR and 10.8 mg/L in visible light, showing that the presence of UV radiation in the SSR source increased the phytotoxicity of PHE. Strikingly, PHEQ was much more toxic to L. gibba than PHE in a light-independent manner (an EC50 of 0.53 and 0.57 mg/L PHEQ in dark and SSR, respectively). Thus, for both P. phosphoreum and L. gibba the major photooxidation product of PHE in SSR, PHEQ, is the more toxic of the two chemicals.
The main objective of this work is the study of the phylogeny, evolution and ecological importance of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, the activity of which represents one of the most important and studied mechanisms used by plant growth–promoting microorganisms. The ACC deaminase gene and its regulatory elements presence in completely sequenced organisms was verified by multiple searches in diverse databases, and based on the data obtained a comprehensive analysis was conducted. Strain habitat, origin and ACC deaminase activity were taken into account when analyzing the results. In order to unveil ACC deaminase origin, evolution and relationships with other closely related pyridoxal phosphate (PLP) dependent enzymes a phylogenetic analysis was also performed. The data obtained show that ACC deaminase is mostly prevalent in some Bacteria, Fungi and members of Stramenopiles. Contrary to previous reports, we show that ACC deaminase genes are predominantly vertically inherited in various bacterial and fungal classes. Still, results suggest a considerable degree of horizontal gene transfer events, including interkingdom transfer events. A model for ACC deaminase origin and evolution is also proposed. This study also confirms the previous reports suggesting that the Lrp-like regulatory protein AcdR is a common mechanism regulating ACC deaminase expression in Proteobacteria, however, we also show that other regulatory mechanisms may be present in some Proteobacteria and other bacterial phyla. In this study we provide a more complete view of the role for ACC deaminase than was previously available. The results show that ACC deaminase may not only be related to plant growth promotion abilities, but may also play multiple roles in microorganism's developmental processes. Hence, exploring the origin and functioning of this enzyme may be the key in a variety of important agricultural and biotechnological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.