bAcute myeloid leukemia (AML) is characterized by increased proliferation and blocked differentiation of hematopoietic progenitors mediated, in part, by altered myeloid transcription factor expression. Decreased Krüppel-like factor 4 (KLF4) expression has been observed in AML, but how decreased KLF4 contributes to AML pathogenesis is largely unknown. We demonstrate decreased KLF4 expression in AML patient samples with various cytogenetic aberrations, confirm that KLF4 overexpression promotes myeloid differentiation and inhibits cell proliferation in AML cell lines, and identify new targets of KLF4. We have demonstrated that microRNA 150 (miR-150) expression is decreased in AML and that reintroducing miR-150 expression induces myeloid differentiation and inhibits proliferation of AML cells. We show that KLF family DNA binding sites are necessary for miR-150 promoter activity and that KLF2 or KLF4 overexpression induces miR-150 expression. miR-150 silencing, alone or in combination with silencing of CDKN1A, a well-described KLF4 target, did not fully reverse KLF4-mediated effects. Gene expression profiling and validation identified putative KLF4-regulated genes, including decreased MYC and downstream MYC-regulated gene expression in KLF4-overexpressing cells. Our findings indicate that decreased KLF4 expression mediates antileukemic effects through regulation of gene and microRNA networks, containing miR-150, CDKN1A, and MYC, and provide mechanistic support for therapeutic strategies increasing KLF4 expression.A cute myeloid leukemia (AML) is characterized by increased self-renewal of leukemia stem or progenitor cells and a failure of differentiation to mature myeloid cells. Normal hematopoietic cell differentiation and proliferation are regulated by the expression and interaction of specific transcription factors (1, 2), which are altered in AML (3-5). Elucidation of the genomic landscape of AML has further highlighted that alterations in myeloid transcription factors play a significant role in leukemogenesis (4). Recent attention has focused on the role of aberrant expression of the Krüppel-like factor (KLF) family of transcription factors in cancer (5). This family includes 17 different isoforms that bind to GCrich regions of DNA via three zinc finger domains and regulate the transcriptional activity of target genes by using two glutaminerich transactivation domains (5). KLF4 regulates differentiation of epidermal and vascular smooth muscle cells (6, 7), as well as cellular reprogramming to induce pluripotent stem cells (8). In normal hematopoiesis, KLF2 and KLF4 regulate myeloid differentiation and KLF4 expression induces CDKN1A (p21), which contributes to cell cycle arrest (9-13). In T-cell acute lymphoblastic leukemia (T-ALL) (14) and B-cell lymphomas, KLF4 has been described as a tumor suppressor regulating proliferation, apoptosis, and differentiation (15). A recent study showed that the homeobox transcription factor CDX2 represses KLF4 in myeloid leukemia cells (16). The investigators also observed that C...
Background: Acute myeloid leukemia (AML) is characterized by increased self-renewal of leukemia stem/progenitor cells and failure of differentiation to mature myeloid cells. MicroRNAs (miRNAs) are small single stranded non-coding RNAs 19 to 24 nucleotides in length that regulate expression of tens to hundreds of genes via mRNA degradation or translational repression. MiRNA contributions to normal hematopoiesis have been described and deletion of key miRNA processing enzymes in murine and human cells suggests that miRNA loss contributes to the cancer phenotype and aberrant differentiation in leukemia. By combining observations of miRNA expression in normal hematopoietic progenitor cells and patient AML cells and high-throughput lentiviral expression library screening approaches in AML cell lines we have identified candidate miRNAs that contribute to altered proliferation and differentiation in AML cells. We have previously established 1) that miR-150 expression is decreased in a large subset of primary patient AML samples, in particular poor risk cytogenetic groups, 2) and that miR-150 re-expression induces myeloid differentiation and decreases cell proliferation of normal hematopoietic progenitor cells and AML cell lines and primary patient cells in part through downregulation of MYB expression. MiR-150 loss is relevant in other hematopoietic and solid tumor malignancies where re-expression inhibits cell proliferation, promotes apoptosis and induces reversal of endothelial to mesenchymal transition. Transcription factors are important regulators of myeloid differentiation and cell proliferation. Moreover, as highlighted by recent sequencing of the AML genome, alterations in myeloid transcription factors through mutation, gene rearrangement, and altered expression play a significant role in leukemogenesis. Consequently, we have focused on how myeloid transcription factors regulate miRNA expression, specifically for miR-150. Results: Using 5’RACE from healthy bone marrow RNA, we identified a major transcription start site at 214 basepairs upstream of the pre-miR-150 hairpin. We identified the minimal miR-150 promoter region as -266 to +259 basepairs from the major transcription start site using miR-150 promoter truncation luciferase constructs assayed in myeloid leukemia cell lines (THP-1, K562, and KG1a) and a lymphoid leukemia cell line (Jurkat). We identified DNA binding sites for the Krüppel-like factor (KLF) family of transcription factors that are necessary for miR-150 promoter activity using site-directed DNA mutagenesis of the luciferase reporters. KLFs regulate proliferation, differentiation, pluripotency, migration and inflammation. Depending on cell type and context, KLFs can function as tumor suppressors or oncogenes. To identify which KLF isoforms regulate miR-150 expression, we assayed the ability of KLFs 2, 3, 4, 5, 6, 7, 9, and 10 to induce miR-150 promoter activity using the luciferase reporters and endogenous miR-150 expression by quantitative PCR. KLF2 and KLF4 overexpression increased miR-150 promoter activity in luciferase assays 50-fold and 450-fold respectively in K562 cells. Furthermore, KLF2 and KLF4 induced endogenous miR-150 expression 20-fold and 100-fold respectively as detected by quantitative PCR in both THP-1 and K562 cells. Prior work has established that KLF2 and KLF4 regulate the differentiation of monocytes. We then confirmed that KLF2 and KLF4 overexpression promotes myeloid differentiation of THP-1 cells by flow cytometry and gene expression that was partially reversed by inhibition of miR-150 expression. Conclusions: Previous studies have determined that KLF2 and KLF4 expression are decreased or absent in a significant subset of AML cases. Our observations suggest that loss of KLF2 and KLF4 expression contributes to decreased miR-150 expression which in turn alters cell proliferation and differentiation. Other studies have implicated the cell cycle inhibitor p21WAF1/CIP1 and altered PPAR gamma signaling downstream of KLF4. Nonetheless, our mechanistic understanding is limited. Our work suggests that the loss of miR-150 and other miRNAs downstream of these transcription factors also contributes. Understanding the interactions between KLFs, miR-150 and other miRNAs has broader significance as KLF2 and KLF4 expression is altered in other hematopoietic and solid tumors. Disclosures No relevant conflicts of interest to declare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.