This paper presents the first global map of food systems sustainability based on a rigorous protocol. The choice of the metric dimensions, as well as the individual indicators included in the metric, were initially identified from a thorough review of the existing literature. A rigorous inclusion/exclusion protocol was then used to refine the list and shorten it to a sub-set of 27 indicators. An aggregate sustainability score was then computed based on those 27 indicators organized into four dimensions: environment, social, food security & nutrition and economic. The paper shows how the availability of data (or lack therefore) results in an unavoidable trade-off between number of indicators and number of countries, and highlights how optimization can be used to present the most robust metric possible given the existence of this trade-offs in the data space. The process results in the computation of a global sustainability map covering 97 countries and 20 indicators. The sustainability scores obtained for each country are made available over the entire range of indicators.
At present, our ability to comprehend the dynamics of food systems and the consequences of their rapid 'transformations' is limited. In this paper, we propose to address this gap by exploring the interactions between the sustainability of food systems and a set of key drivers at the global scale. For this we compile a metric of 12 key drivers of food system from a globally-representative set of low, middle, and high-income countries and analyze the relationships between these drivers and a composite index that integrates the four key dimensions of food system sustainability, namely: food security & nutrition, environment, social, and economic dimensions. The two metrics highlight the important data gap that characterizes national systems' statistics-in particular in relation to transformation, transport, retail and distribution. Spearman correlations and Principal Component Analysis are then used to explore associations between levels of sustainability and drivers. With the exception of one economic driver (trade flows in merchandise and services), the majority of the statistically significant correlations found between food system sustainability and drivers appear to be negative. The fact that most of these negative drivers are closely related to the global demographic transition that is currently affecting the world population highlights the magnitude of the challenges ahead. This analysis is the first one that provides quantitative evidence at the global scale about correlations between the four dimensions of sustainability of our food systems and specific drivers.
The COVID-19 pandemic has changed the course of human development. In this manuscript we analyze the long-term effect of COVID-19 on poverty at the country-level across various income thresholds to 2050. We do this by introducing eight quantitative scenarios that model the future of Sustainable Development Goal 1 (SDG1) achievement using alternative assumptions about COVID-19 effects on both economic growth and inequality in the International Futures model. Relative to a scenario without the pandemic (the No COVID scenario), the COVID Base scenario increases global extreme poverty by 73.9 million in 2020 (the range across all scenarios: 43.5 to 155.0 million), 63.6 million in 2030 (range: 9.8 to 167.2 million) and 57.1 million in 2050 (range: 3.1 to 163.0 million). The COVID Base results in seven more countries not meeting the SDG1 target by 2030 that would have achieved the target in a No COVID scenario. The most pessimistic scenario results in 17 more countries not achieving SDG1 compared with a No COVID scenario. The greatest pandemic driven increases in poverty occur in South Asia and sub-Saharan Africa.
The connection between international trade and food systems (un)sustainability is both contentious and critical for policy work supporting progress towards achieving the twin goals of hunger alleviation and dietary health while improving the overall sustainability of development. We characterize the food system using a set of metrics based upon the EAT-Lancet commission dietary guidelines for both over- and under-consumption of different foods to assess country-level dietary health and sustainability in tandem. Using a partial equilibrium model of agricultural production and trade, we then project the functioning of the global agricultural system to 2050 and calculate the metrics for that year. For most regions we find increased overconsumption above the expert-defined healthy and sustainable diet thresholds, with more limited progress towards closing dietary health and sustainability gaps where they currently exist. Trade influences this dynamic into the future under certain socioeconomic conditions, and we find that under a “business as usual” trade environment, future agricultural import profiles continue to be misaligned with dietary health and sustainability outcomes, suggesting the potential for early intervention in trade policy as a means to positively influence food system outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.