The current manuscript sets out a series of guidelines for blood flow restriction exercise, focusing on the methodology, application and safety of this mode of training. With the emergence of this technique and the wide variety of applications within the literature, the aim of this review is to set out a current research informed guide to blood flow restriction training to practitioners. This covers the use of blood flow restriction to enhance muscular strength and hypertrophy via training with resistance and aerobic exercise and preventing muscle atrophy using the technique passively. The authorship team for this article was selected from the researchers focused in blood flow restriction training research with expertise in exercise science, strength and conditioning and sports medicine.
Key Points• The blood flow restriction (BFR) stimulus should be individualized for each participant. In particular, consideration should be given to the restrictive pressure applied and cuff width used.• BFR elicits the largest increases in muscular development when combined with low-load resistance exercise, though some benefits may be seen using BFR alone during immobilization or combined with low-workload cardiovascular exercise.• For healthy individuals, training adaptations are likely maximized by combining low-load BFR resistance exercise with traditional high-load resistance exercise. 2 AbstractA growing body of evidence supports the use of moderate blood flow restriction (BFR) combined with low-load resistance exercise to enhance hypertrophic and strength responses in skeletal muscle. Research also suggests that BFR during lowworkload aerobic exercise can result in small but significant morphological and strength gains, and BFR alone may attenuate atrophy during periods of unloading.While BFR appears to be beneficial for both clinical and athletic cohorts, there is currently no common consensus amongst scientists and practitioners regarding the best practice for implementing BFR methods. If BFR is not employed appropriately, there is a risk of injury to the participant. It is also important to understand how variations in the cuff application can affect the physiological responses and subsequent adaptation to BFR training. The optimal way to manipulate acute exercise variables, such as exercise type, load, volume, inter-set rest periods and training frequency, must also be considered prior to designing a BFR training program. The purpose of this review is to provide an evidence-based approach to implementing BFR exercise. These guidelines could be useful for practitioners using BFR training in either clinical or athletic settings, or for researchers in the design of future studies investigating BFR exercise.3
Purpose:To compare various measures of training load (TL) derived from physiological (heart rate [HR]), perceptual (rating of perceived exertion [RPE]), and physical (global positioning system [GPS] and accelerometer) data during in-season field-based training for professional soccer.Methods:Fifteen professional male soccer players (age 24.9 ± 5.4 y, body mass 77.6 ± 7.5 kg, height 181.1 ± 6.9 cm) were assessed in-season across 97 individual training sessions. Measures of external TL (total distance [TD], the volume of low-speed activity [LSA; <14.4 km/h], high-speed running [HSR; >14.4 km/h], very high-speed running [VHSR; >19.8 km/h], and player load), HR and session-RPE (sRPE) scores were recorded. Internal TL scores (HR-based and sRPE-based) were calculated, and their relationships with measures of external TL were quantified using Pearson product–moment correlations.Results:Physical measures of TD, LSA volume, and player load provided large, significant (r = .71−.84; P < .01) correlations with the HR-based and sRPE-based methods. Volume of HSR and VHSR provided moderate to large, significant (r = .40−.67; P < .01) correlations with measures of internal TL.Conclusions:While the volume of HSR and VHSR provided significant relationships with internal TL, physical-performance measures of TD, LSA volume, and player load appear to be more acceptable indicators of external TL, due to the greater magnitude of their correlations with measures of internal TL.
It is generally believed that optimal hypertrophic and strength gains are induced through moderate-or high-intensity resistance training, equivalent at least 60% of an individual's 1-repetition maximum (1RM). However, recent evidence suggests that similar adaptations are facilitated when low-intensity resistance exercise (~20-50% 1RM) is combined with blood flow restriction (BFR) to the working muscles. Although the mechanisms underpinning these responses are not yet firmly established, it appears that localized hypoxia created by BFR may provide an anabolic stimulus by enhancing the metabolic and endocrine response, and increase cellular swelling and signalling function following resistance exercise. Moreover, BFR has also been demonstrated to increase type II muscle fibre recruitment during exercise.However, inappropriate implementation of BFR can result in detrimental effects, including petechial haemorrhage and dizziness. Further, as BFR is limited to the limbs, the muscles of the trunk are unable to be trained under localized hypoxia. More recently, the use of systemic hypoxia via hypoxic chambers and devices has been investigated as a novel way to stimulate similar physiological responses to resistance training as BFR techniques. While little evidence is available, reports indicate that beneficial adaptations, similar to those induced by BFR, are possible using these methods. The use of systemic hypoxia allows large groups to train concurrently within a hypoxic chamber using multi-joint exercises. However, further scientific research is required to fully understand the mechanisms that cause augmented muscular changes during resistance exercise with a localized or systemic hypoxic stimulus.3
Key Points• To quantify resistance exercise, it is important to understand the numerous factors contributing to the overall intensity of training, rather than simply the relative load being lifted.• Methods to monitor the external volume load, perceptual training intensity, subjective wellness, and physical performance during resistance exercise all appear useful methods for monitoring resistance training.• Strength coaches should identify which monitoring tools are applicable and viable for their athletes, and should take an integrative approach to resistance training monitoring to help inform their practice.3 AbstractResistance exercise is difficult to quantify due to its inherent complexity with numerous training variables contributing to the training dose (type of exercise, load lifted, training volume, inter-set rest periods and repetition velocity). In addition, the intensity of resistance training is often inadequately determined as the relative load lifted (% 1-repetition maximum), which does not account for the effects of inter-set recovery periods, repetition velocity, or the number of repetitions performed in each set at a given load. Methods to calculate the volume load associated with resistance training, as well as the perceived intensity of individual sets and entire training sessions have been shown to provide useful information regarding the actual training stimulus. In addition, questionnaires to subjectively assess how athletes are coping with the stressors of training and portable technologies to quantify performance variables such as concentric velocity may also be valuable. However, while several methods have been proposed to quantify resistance training, there is not yet consensus regarding how these methods can be best implemented and integrated to complement each other. Therefore, the purpose of this review is to provide practical information for strength coaches to highlight effective methods to assess resistance training, and how they can be integrated into a comprehensive monitoring program.4
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.