Intestinal microbiota metabolism of choline/phosphatidylcholine produces trimethylamine (TMA), which is further metabolized to a proatherogenic species, trimethylamine-N-oxide (TMAO). Herein we demonstrate that intestinal microbiota metabolism of dietary L-carnitine, a trimethylamine abundant in red meat, also produces TMAO and accelerates atherosclerosis. Omnivorous subjects are shown to produce significantly more TMAO than vegans/vegetarians following ingestion of L-carnitine through a microbiota-dependent mechanism. Specific bacterial taxa in human feces are shown to associate with both plasma TMAO and dietary status. Plasma L-carnitine levels in subjects undergoing cardiac evaluation (n = 2,595) predict increased risks for both prevalent cardiovascular disease (CVD) and incident major adverse cardiac events (MI, stroke or death), but only among subjects with concurrently high TMAO levels. Chronic dietary L-carnitine supplementation in mice significantly altered cecal microbial composition, markedly enhanced synthesis of TMA/TMAO, and increased atherosclerosis, but not following suppression of intestinal microbiota. Dietary supplementation of TMAO, or either carnitine or choline in mice with intact intestinal microbiota, significantly reduced reverse cholesterol transport in vivo. Intestinal microbiota may thus participate in the well-established link between increased red meat consumption and CVD risk.
Background Liposomal bupivacaine is purported to extend analgesia of peripheral nerve blocks when administered perineurally. However, evidence of the clinical effectiveness of perineural liposomal bupivacaine is mixed. This meta-analysis seeks to evaluate the effectiveness of perineural liposomal bupivacaine in improving peripheral nerve block analgesia as compared with nonliposomal local anesthetics. Methods The authors identified randomized trials evaluating the effectiveness of peripheral nerve block analgesic that compared liposomal bupivacaine with nonliposomal local anesthetics. The primary outcome was the difference in area under the receiver operating characteristics curve (AUC) of the pooled 24- to 72-h rest pain severity scores. Secondary outcomes included postoperative analgesic consumption, time to first analgesic request, incidence of opioid-related side effects, patient satisfaction, length of hospital stay, liposomal bupivacaine side effects, and functional recovery. AUC pain scores were interpreted in light of a minimal clinically important difference of 2.0 cm · h. Results Nine trials (619 patients) were analyzed. When all trials were pooled, AUC pain scores ± SD at 24 to 72 h were 7.6 ± 4.9 cm · h and 6.6 ± 4.6 cm · h for nonliposomal and liposomal bupivacaine, respectively. As such, perineural liposomal bupivacaine provided a clinically unimportant benefit by improving the AUC (95% CI) of 24- to 72-h pain scores by 1.0 cm · h (0.5 to 1.6; P = 0.003) compared with nonliposomal bupivacaine. Excluding an industry-sponsored trial rendered the difference between the groups nonsignificant (0.7 cm · h [−0.1 to 1.5]; P = 0.100). Secondary outcome analysis did not uncover any additional benefits to liposomal bupivacaine in pain severity at individual timepoints up to 72 h, analgesic consumption, time to first analgesic request, opioid-related side effects, patient satisfaction, length of hospital stay, and functional recovery. No liposomal bupivacaine side effects were reported. Conclusions Perineural liposomal bupivacaine provided a statistically significant but clinically unimportant improvement in the AUC of postoperative pain scores compared with plain local anesthetic. Furthermore, this benefit was rendered nonsignificant after excluding an industry-sponsored trial, and liposomal bupivacaine was found to be not different from plain local anesthetics for postoperative pain and all other analgesic and functional outcomes. High-quality evidence does not support the use of perineural liposomal bupivacaine over nonliposomal bupivacaine for peripheral nerve blocks. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.