Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for COVID-19, is a novel human betacoronavirus that is rapidly spreading worldwide. The outbreak currently includes over 3.7 million cases and 260,000 fatalities. As a betacoronavirus, SARS-CoV-2 encodes for a papain-like protease (PLpro) that is likely responsible for cleavage of the coronavirus (CoV) viral polypeptide. The PLpro is also responsible for suppression of host innate immune responses by virtue of its ability to reverse host ubiquitination and ISGylation events. Here, the biochemical activity of SARS-CoV-2 PLpro against ubiquitin (Ub) and interferon-stimulated gene product 15 (ISG15) substrates is evaluated, revealing that the protease has a marked reduction in its ability to process K48 linked Ub substrates compared to its counterpart in SARS-CoV. Additionally, its substrate activity more closely mirrors that of the PLpro from the Middle East respiratory syndrome coronavirus and prefers ISG15s from certain species including humans. Additionally, naphthalene based PLpro inhibitors are shown to be effective at halting SARS-CoV-2 PLpro activity as well as SARS-CoV-2 replication.
Viral proteases are highly specific and recognize conserved cleavage site sequences of
∼6–8 amino acids. Short stretches of homologous host–pathogen
sequences (SSHHPS) can be found spanning the viral protease cleavage sites. We
hypothesized that these sequences corresponded to specific host protein targets since
>40 host proteins have been shown to be cleaved by Group IV viral proteases and one
Group VI viral protease. Using PHI-BLAST and the viral protease cleavage site sequences,
we searched the human proteome for host targets and analyzed the hit results. Although
the polyprotein and host proteins related to the suppression of the innate immune
responses may be the primary targets of these viral proteases, we identified other
cleavable host proteins. These proteins appear to be related to the virus-induced
phenotype associated with Group IV viruses, suggesting that information about viral
pathogenesis may be extractable directly from the viral genome sequence. Here we
identify sequences cleaved by the SARS-CoV-2 papain-like protease (PLpro)
in
vitro
within human MYH7 and MYH6 (two cardiac myosins linked to several
cardiomyopathies), FOXP3 (an X-linked T
reg
cell transcription factor), ErbB4
(HER4), and vitamin-K-dependent plasma protein S (PROS1), an anticoagulation protein
that prevents blood clots. Zinc inhibited the cleavage of these host sequences
in vitro
. Other patterns emerged from multispecies sequence
alignments of the cleavage sites, which may have implications for the selection of
animal models and zoonosis. SSHHPS/nsP is an example of a sequence-specific
post-translational silencing mechanism.
Tick-borne nairoviruses (order Bunyavirales) encode an ovarian tumor domain protease (OTU) that suppresses the innate immune response by reversing the post-translational modification of proteins by ubiquitin (Ub) and interferon-stimulated gene product 15 (ISG15). Ub is highly conserved across eukaryotes, whereas ISG15 is only present in vertebrates and shows substantial sequence diversity. Prior attempts to address the effect of ISG15 diversity on viral protein-ISG15 interactions have focused on only a single species’ ISG15 or a limited selection of nairovirus OTUs. To gain a more complete perspective of OTU-ISG15 interactions, we biochemically assessed the relative activities of 14 diverse nairovirus OTUs for 12 species’ ISG15 and found that ISG15 activity is predominantly restricted to particular nairovirus lineages reflecting, in general, known virus-host associations. To uncover the underlying molecular factors driving OTUs affinity for ISG15, X-ray crystal structures of Kupe virus and Ganjam virus OTUs bound to sheep ISG15 were solved and compared to complexes of Crimean-Congo hemorrhagic fever virus and Erve virus OTUs bound to human and mouse ISG15, respectively. Through mutational and structural analysis seven residues in ISG15 were identified that predominantly influence ISG15 species specificity among nairovirus OTUs. Additionally, OTU residues were identified that influence ISG15 preference, suggesting the potential for viral OTUs to adapt to different host ISG15s. These findings provide a foundation to further develop research methods to trace nairovirus-host relationships and delineate the full impact of ISG15 diversity on nairovirus infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.