Acetaminophen-induced liver injury in mice is a model for drug-induced liver injury in humans. A precondition for improved strategies to disrupt and/or reverse the damage is a credible explanatory mechanism for how toxicity phenomena emerge and converge to cause hepatic necrosis. The Target Phenomenon in mice is that necrosis begins adjacent to the lobule’s central vein (CV) and progresses outward. An explanatory mechanism remains elusive. Evidence supports that location dependent differences in NAPQI (the reactive metabolite) formation within hepatic lobules (NAPQI zonation) are necessary and sufficient prerequisites to account for that phenomenon. We call that the NZ-mechanism hypothesis. Challenging that hypothesis in mice is infeasible because 1) influential variables cannot be controlled, and 2) it would require sequential intracellular measurements at different lobular locations within the same mouse. Virtual hepatocytes use independently configured periportal-to-CV gradients to exhibit lobule-location dependent behaviors. Employing NZ-mechanism achieved quantitative validation targets for acetaminophen clearance and metabolism but failed to achieve the Target Phenomenon. We posited that, in order to do so, at least one additional feature must exhibit zonation by decreasing in the CV direction. We instantiated and explored two alternatives: 1) a glutathione depletion threshold diminishes in the CV direction; and 2) ability to repair mitochondrial damage diminishes in the CV direction. Inclusion of one or the other feature into NZ-mechanism failed to achieve the Target Phenomenon. However, inclusion of both features enabled successfully achieving the Target Phenomenon. The merged mechanism provides a multilevel, multiscale causal explanation of key temporal features of acetaminophen hepatotoxicity in mice. We discovered that variants of the merged mechanism provide plausible quantitative explanations for the considerable variation in 24-hour necrosis scores among 37 genetically diverse mouse strains following a single toxic acetaminophen dose.
Traditionally, precision medicine involves classifying patients to identify subpopulations that respond favorably to specific therapeutics. We pose precision medicine as a dynamic feedback control problem, where treatment administered to a patient is guided by measurements taken during the course of treatment. We consider sepsis, a life-threatening condition in which dysregulation of the immune system causes tissue damage. We leverage an existing simulation of the innate immune response to infection and apply deep reinforcement learning (DRL) to discover an adaptive personalized treatment policy that specifies effective multicytokine therapy to simulated sepsis patients based on systemic measurements. The learned policy achieves a dramatic reduction in mortality rate over a set of 500 simulated patients relative to standalone antibiotic therapy. Advantages of our approach are threefold: (1) the use of simulation allows exploring therapeutic strategies beyond clinical practice and available data, (2) advances in DRL accommodate learning complex therapeutic strategies for complex biological systems, and (3) optimized treatments respond to a patient's individual disease progression over time, therefore, capturing both differences across patients and the inherent randomness of disease progression within a single patient. We hope that this work motivates both considering adaptive personalized multicytokine mediation therapy for sepsis and exploiting simulation with DRL for precision medicine more broadly.
BackgroundCurrently, most biomedical models exist in isolation. It is often difficult to reuse or integrate models or their components, in part because they are not modular. Modular components allow the modeler to think more deeply about the role of the model and to more completely address a modeling project’s requirements. In particular, modularity facilitates component reuse and model integration for models with different use cases, including the ability to exchange modules during or between simulations. The heterogeneous nature of biology and vast range of wet-lab experimental platforms call for modular models designed to satisfy a variety of use cases. We argue that software analogs of biological mechanisms are reasonable candidates for modularization. Biomimetic software mechanisms comprised of physiomimetic mechanism modules offer benefits that are unique or especially important to multi-scale, biomedical modeling and simulation.ResultsWe present a general, scientific method of modularizing mechanisms into reusable software components that we call physiomimetic mechanism modules (PMMs). PMMs utilize parametric containers that partition and expose state information into physiologically meaningful groupings. To demonstrate, we modularize four pharmacodynamic response mechanisms adapted from an in silico liver (ISL). We verified the modularization process by showing that drug clearance results from in silico experiments are identical before and after modularization. The modularized ISL achieves validation targets drawn from propranolol outflow profile data. In addition, an in silico hepatocyte culture (ISHC) is created. The ISHC uses the same PMMs and required no refactoring. The ISHC achieves validation targets drawn from propranolol intrinsic clearance data exhibiting considerable between-lab variability. The data used as validation targets for PMMs originate from both in vitro to in vivo experiments exhibiting large fold differences in time scale.ConclusionsThis report demonstrates the feasibility of PMMs and their usefulness across multiple model use cases. The pharmacodynamic response module developed here is robust to changes in model context and flexible in its ability to achieve validation targets in the face of considerable experimental uncertainty. Adopting the modularization methods presented here is expected to facilitate model reuse and integration, thereby accelerating the pace of biomedical research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.