All crocodilians and many turtles exhibit temperature-dependent sex determination where the temperature of the incubated egg, during a thermo-sensitive period (TSP), determines the sex of the offspring. Estrogens play a critical role in sex determination in crocodilians and turtles, as it likely does in most nonmammalian vertebrates. Indeed, administration of estrogens during the TSP induces male to female sex reversal at a male-producing temperature (MPT). However, it is not clear how estrogens override the influence of temperature during sex determination in these species. Most vertebrates have 2 forms of nuclear estrogen receptor (ESR): ESR1 (ERα) and ESR2 (ERβ). However, there is no direct evidence concerning which ESR is involved in sex determination, because a specific agonist or antagonist for each ESR has not been tested in nonmammalian species. We identified specific pharmaceutical agonists for each ESR using an in vitro transactivation assay employing American alligator ESR1 and ESR2; these were 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) and 7-bromo-2-(4-hydroxyphenyl)-1,3-benzoxazol-5-ol (WAY 200070), respectively. Alligator eggs were exposed to PPT or WAY 200070 at a MPT just before the TSP, and their sex was examined at the last stage of embryonic development. Estradiol-17β and PPT, but not WAY 200070, induced sex reversal at a MPT. PPT-exposed embryos exposed to the highest dose (5.0 μg/g egg weight) exhibited enlargement and advanced differentiation of the Müllerian duct. These results indicate that ESR1 is likely the principal ESR involved in sex reversal as well as embryonic Müllerian duct survival and growth in American alligators.
Climate change is an urgent public health issue that is impacting health locally and across the world. Healthcare professionals are on the front lines for public health, caring for people affected by climate change; yet few studies have assessed their knowledge and experiences of local climate change effects. The purpose of this study was to improve our understanding of the health impacts of climate change in Minnesota from the perspective of healthcare professionals. An electronic survey was administered by the Minnesota Department of Health (MDH) to a convenience sample of Board-certified nurses and physicians in Minnesota. Seventy-five percent of respondents agreed that climate change is happening, and 60% agreed that it is currently impacting the health of their patients. However, only 21% felt well prepared to discuss climate change, and only 4% discussed climate change with all or most of their patients. Similarly, results from open-ended questions highlighted the importance of climate change and acknowledged the challenges of discussing this topic. While most respondents recognized the health impacts of climate change, they also reported feeling uncomfortable discussing climate change with patients. Thus, there is an opportunity to develop targeted resources to support healthcare professionals in addressing climate change.
Estrogens regulate key aspects of sexual determination and differentiation, and exposure to exogenous estrogens can alter ovarian development. Alligators inhabiting Lake Apopka, FL are historically exposed to estrogenic endocrine disrupting contaminants and are characterized by a suite of reproductive abnormalities, including altered ovarian gene expression and abated transcriptional responses to follicle stimulating hormone. Here, we test the hypothesis that disrupting estrogen signaling during gonadal differentiation results in persistent alterations to ovarian gene expression that mirror alterations observed in alligators from Lake Apopka. Alligator embryos collected from a reference site lacking environmental contamination were exposed to estradiol-17 beta or a non-aromatizable androgen in ovo and raised to the juvenile stage. Changes in basal and gonadotropin-challenged ovarian gene expression were then compared to Apopka juveniles raised under identical conditions. Assessing basal transcription in untreated reference and Apopka animals revealed a consistent pattern of differential expression of key ovarian genes. For each gene where basal expression differed across sites, in ovo estradiol treatment in reference individuals recapitulated patterns observed in Apopka alligators. Among those genes affected by site and estradiol treatment were three aryl hydrocarbon receptor (AHR) isoforms, suggesting that developmental estrogen signaling might program sensitivity to AHR ligands later in life. Treatment with gonadotropins stimulated strong ovarian transcriptional responses, however, the magnitude of responses was not strongly affected by steroid hormone treatment. Collectively, these findings demonstrate that precocious estrogen signaling in the developing ovary likely underlies altered transcriptional profiles observed in a natural population exposed to endocrine disrupting contaminants.
No abstract
Androgens are essential for the development, reproduction, and health throughout the life span of vertebrates, particularly during the initiation and maintenance of male sexual characteristics. Androgen signaling is mediated by the androgen receptor (AR), a member of the steroid nuclear receptor superfamily. Mounting evidence suggests that environmental factors, such as exogenous hormones or contaminants that mimic hormones, can disrupt endocrine signaling and function. The American alligator (Alligator mississippiensis), a unique model for ecological research in that it exhibits environment-dependent sex determination, is oviparous and long lived. Alligators from a contaminated environment exhibit low reproductive success and morphological disorders of the testis and phallus in neonates and juveniles, both associated with androgen signaling; thus, the alterations are hypothesized to be related to disrupted androgen signaling. However, this line of research has been limited because of a lack of information on the alligator AR gene. Here, we isolated A mississippiensis AR homologs (AmAR) and evaluated receptor-hormone/chemical interactions using a transactivation assay. We showed that AmAR responded to all natural androgens and their effects were inhibited by cotreatment with antiandrogens, such as flutamide, p,p'-dichlorodiphenyldichloroethylene, and vinclozolin. Intriguingly, we found a spliced form of the AR from alligator cDNA, which lacks seven amino acids within the ligand-binding domain that shows no response to androgens. Finally, we have initial data on a possible dominant-negative function of the spliced form of the AR against androgen-induced AmAR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.