As driving functions become increasingly automated, motorists run the risk of becoming cognitively removed from the driving process. Psychophysiological measures may provide added value not captured through behavioral or self-report measures alone. This paper provides a selective review of the psychophysiological measures that can be utilized to assess cognitive states in real-world driving environments. First, the importance of psychophysiological measures within the context of traffic safety is discussed. Next, the most commonly used physiology-based indices of cognitive states are considered as potential candidates relevant for driving research. These include: electroencephalography and event-related potentials, optical imaging, heart rate and heart rate variability, blood pressure, skin conductance, electromyography, thermal imaging, and pupillometry. For each of these measures, an overview is provided, followed by a discussion of the methods for measuring it in a driving context. Drawing from recent empirical driving and psychophysiology research, the relative strengths and limitations of each measure are discussed to highlight each measures' unique value. Challenges and recommendations for valid and reliable quantification from lab to (less predictable) real-world driving settings are considered. Finally, we discuss measures that may be better candidates for a near real-time assessment of motorists' cognitive states that can be utilized in applied settings outside the lab. This review synthesizes the literature on in-vehicle psychophysiological measures to advance the development of effective human-machine driving interfaces and driver support systems.
The present study investigated whether an intervention aimed to increase cognitive ability in older adults also changes the personality trait of openness to experience. Older adults completed a 16-week program in inductive reasoning training supplemented by weekly crossword and Sudoku puzzles. Changes in openness to experience were modeled across four assessments over 30 weeks using latent growth curve models. Results indicate that participants in the intervention condition increased in the trait of openness compared to a waitlist control group. The study is one of the first to demonstrate that personality traits can change through non-psychopharmocological interventions.
The amplitude of the N400— an event-related potential (ERP) component linked to meaning processing and initial access to semantic memory— is inversely related to the incremental build-up of semantic context over the course of a sentence. We revisited the nature and scope of this incremental context effect, adopting a word-level linear mixed-effects modeling approach, with the goal of probing the continuous and incremental effects of semantic and syntactic context on multiple aspects of lexical processing during sentence comprehension (i.e., effects of word frequency and orthographic neighborhood). First, we replicated the classic word position effect at the single-word level: open-class words showed reductions in N400 amplitude with increasing word position in semantically congruent sentences only. Importantly, we found that accruing sentence context had separable influences on the effects of frequency and neighborhood on the N400. Word frequency effects were reduced with accumulating semantic context. However, orthographic neighborhood was unaffected by accumulating context, showing robust effects on the N400 across all words, even within congruent sentences. Additionally, we found that N400 amplitudes to closed-class words were reduced with incrementally constraining syntactic context in sentences that provided only syntactic constraints. Taken together, our findings indicate that modeling word-level variability in ERPs reveals mechanisms by which different sources of information simultaneously contribute to the unfolding neural dynamics of comprehension.
The present study was an examination of how exposure to print affects sentence processing and memory in older readers. A sample of older adults (N = 139; Mean age = 72) completed a battery of cognitive and linguistic tests and read a series of sentences for recall. Word-by-word reading times were recorded and generalized linear mixed effects models were used to estimate components representing attentional allocation to word-level and textbase-level processes. Older adults with higher levels of print exposure showed greater efficiency in word-level processing and in the immediate instantiation of new concepts, but allocated more time to semantic integration at clause boundaries. While lower levels of working memory were associated with smaller wrap-up effects, individuals with higher levels of print exposure showed a reduced effect of working memory on sentence wrap-up. Importantly, print exposure was not only positively associated with sentence memory, but was also found to buffer the effects of working memory on sentence recall. These findings suggest that the increased efficiency of component reading processes that come with life-long habits of literacy buffer the effects of working memory decline on comprehension and contribute to maintaining skilled reading among older adults.
An important question in the reading literature regards the nature of the semantic information readers can extract from the parafovea (i.e., the next word in a sentence). Recent eye-tracking findings have found a semantic parafoveal preview benefit under many circumstances, and findings from event-related brain potentials (ERPs) also suggest that readers can at least detect semantic anomalies parafoveally (Barber, Van der Meij, & Kutas, Psychophysiology, 50(1), 48–59, 2013). We use ERPs to ask whether fine-grained aspects of semantic expectancy can affect the N400 elicited by a word appearing in the parafovea. In an RSVP-with-flankers paradigm, sentences were presented word by word, flanked 2° bilaterally by the previous and upcoming words. Stimuli consisted of high constraint sentences that were identical up to the target word, which could be expected, unexpected but plausible, or anomalous, as well as low constraint sentences that were always completed with the most expected ending. Findings revealed an N400 effect to the target word when it appeared in the parafovea, which was graded with respect to the target’s expectancy and congruency within the sentence context. Furthermore, when targets appeared at central fixation, this graded congruency effect was mitigated, suggesting that the semantic information gleaned from parafoveal vision functionally changes the semantic processing of those words when foveated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.