Abstract. Stress-strain measurements done at different rates and temperatures along with measurements of the rate-and temperature-dependent dynamic storage modulus have allowed us to construct a generalized Maxwell model for the linear viscoelastic response of plasticized estane. A theoretical analysis is presented to include effects of impurites.
The present paper examines potential propulsive and aerodynamic benefits of integrating a Boundary-Layer Ingestion (BLI) propulsion system into a typical commercial aircraft using the Common Research Model (CRM) geometry and the NASA Tetrahedral Unstructured Software System (TetrUSS). The Numerical Propulsion System Simulation (NPSS) environment is used to generate engine conditions for CFD analysis. Improvements to the BLI geometry are made using the Constrained Direct Iterative Surface Curvature (CDISC) design method. Previous studies have shown reductions of up to 25% in terms of propulsive power required for cruise for other axisymmetric geometries using the BLI concept. An analysis of engine power requirements, drag, and lift coefficients using the baseline and BLI geometries coupled with the NPSS model are shown. Potential benefits of the BLI system relating to cruise propulsive power are quantified using a power balance method, and a comparison to the baseline case is made. Iterations of the BLI geometric design are shown and any improvements between subsequent BLI designs presented. Simulations are conducted for a cruise flight condition of Mach 0.85 at an altitude of 38,500 feet and an angle of attack of 2° for all geometries. A comparison between available wind tunnel data, previous computational results, and the original CRM model is presented for model verification purposes along with full results for BLI power savings. Results indicate a 14.4% reduction in engine power requirements at cruise for the BLI configuration over the baseline geometry. Minor shaping of the aft portion of the fuselage using CDISC has been shown to increase the benefit from Boundary-Layer Ingestion further, resulting in a 15.6% reduction in power requirements for cruise as well as a drag reduction of approximately eighteen counts over the baseline geometry.
The present paper examines potential propulsive and aerodynamic benefits of integrating a Boundary-Layer Ingestion (BLI) propulsion system into the Common Research Model (CRM) geometry and the NASA Tetrahedral Unstructured Software System (TetrUSS). The Numerical Propulsion System Simulation (NPSS) environment is used to generate engine conditions for Computational Fluid Dynamics (CFD) analyses. Improvements to the BLI geometry are made using the Constrained Direct Iterative Surface Curvature (CDISC) design method. Potential benefits of the BLI system relating to cruise propulsive power are quantified using a power balance method, and a comparison to the baseline case is made. Iterations of the BLI geometric design are shown, and improvements between subsequent BLI designs are presented. Simulations are conducted for a cruise flight condition of Mach 0.85 at an altitude of 38,500 feet, with Reynolds number of 40 million based on mean aerodynamic chord and an angle of attack of 2° for all geometries. Results indicate an 8% reduction in engine power requirements at cruise for the BLI configuration compared to the baseline geometry. Small geometric alterations of the aft portion of the fuselage using CDISC has been shown to marginally increase the benefit from boundary-layer ingestion further, resulting in an 8.7% reduction in power requirements for cruise, as well as a drag reduction of approximately twelve counts over the baseline geometry.
Abstract.We have developed a constitutive theory based on the Method of Cells and a modified Mori-Tanaka (MT) effective medium theory to model high explosives. MT effective medium theory allows us to model the smaller explosive grains in the viscoelastic matrix while the Method of Cells partitions the representative volume element into a single subcell designating a large grain, and the remaining subcells for the small grain-binder mixture. The model is then implemented into the finite-element code EPIC. Split Hopkinson Pressure Bar (SHPB) experiments are simulated. We compare the predicted incident, transmitted and reflected strains with SHPB experimental values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.