Autonomous vehicles (AVs) are expected to widely re-define mobility in the future, transforming many solutions into autonomous services. Nonetheless, this development requires an expected transition phase of several decades in which some regions will provide sufficient infrastructure for AV movements, while others will not support AVs yet. In this work, we propose an operational planning model for mobility services operating in regions with AV-ready and not AV-ready zones. To this end, we model detailed automated driving areas and consider a heterogeneous fleet comprised of three vehicle types: autonomous, conventional, and dualmode. While autonomous and conventional vehicles can only operate in their designated areas, dual-mode vehicles service zone-crossing demands in which both human and autonomous driving are required. For such a hybrid network, we introduce a new mathematical planning model based on a site-dependent variant of the heterogeneous dial-a-ride problem (HDARP). With a numerical study for the city of Delft, The Netherlands, we provide insights into how operational costs, service levels, and fleet utilization develop under 405 scenarios of multiple infrastructural settings and technology costs.
Current mobility services cannot compete on equal terms with self-owned mobility products concerning service quality. Because of supply and demand imbalances, ridesharing users invariably experience delays, price surges, and rejections. Traditional approaches often fail to respond to demand fluctuations adequately because service levels are, to some extent, bounded by fleet size. With the emergence of autonomous vehicles, however, the characteristics of mobility services change and new opportunities to overcome the prevailing limitations arise. In this paper, we consider an autonomous ridesharing problem in which idle vehicles are hired on-demand in order to meet the service-level requirements of a heterogeneous user base. In the face of uncertain demand and idle vehicle supply, we propose a learning-based optimization approach that uses the dual variables of the underlying assignment problem to iteratively approximate the marginal value of vehicles at each time and location under different availability settings. These approximations are used in the objective function of the optimization problem to dispatch, rebalance, and occasionally hire idle third-party vehicles in a high-resolution transportation network of Manhattan, New York City. The results show that the proposed policy outperforms a reactive optimization approach in a variety of vehicle availability scenarios while hiring fewer vehicles. Moreover, we demonstrate that mobility services can offer strict service-level contracts to different user groups featuring both delay and rejection penalties.
The shared autonomous vehicle (SAV) is a new concept that meets the upcoming trends of autonomous driving and changing demands in urban transportation. SAVs can carry passengers and parcels simultaneously, making use of dedicated passenger and parcel modules on board. A fleet of SAVs could partly take over private transport, taxi, and last-mile delivery services. A reduced fleet size compared to conventional transportation modes would lead to less traffic congestion in urban centres. This paper presents a method to estimate the optimal capacity for the passenger and parcel compartments of SAVs. The problem is presented as a vehicle routing problem and is named variable capacity share-a-ride-problem (VCSARP). The model has a MILP formulation and is solved using a commercial solver. It seeks to create the optimal routing schedule between a randomly generated set of pick-up and dropoff requests of passengers and parcels. The objective function aims to minimize the total energy costs of each schedule, which is a trade-off between travelled distance and vehicle capacity. Different scenarios are composed by altering parameters, representing travel demand at different times of the day. The model results show the optimized cost of each simulation along with associated routes and vehicle capacities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.