Maraging steels are a class of ultra high strength steels of special importance due to their extremely high mechanical strength and good toughness. In this work, the effects of the solution annealing temperature on the mechanical properties of the maraging 300 steels were evaluated, in order to maximize the toughness without considerable detriment of the mechanical strength. Five solution annealing temperatures were evaluated. The characterization of the mechanical properties was done by tests of Rockwell C hardness, Charpy-V impact toughness, and tensile and fracture toughness in plane strain. The results obtained show that the fracture toughness increases, and the tensile strength decreases with the temperature of the solution annealing. In this way it was possible to find a heat treatment condition in which it was possible to raise about 20% of the toughness with a loss of only 6% in the tensile strength.
After continuous annealing process (CAP) at 790°C, 85% of the coils of 50% cold-rolled low carbon microalloyed (LCM) steel did not exhibit yield-strength (YS) on the target range, while the 70% cold-reduced LCM coils did. In this context, the non-isothermal recrystallisation kinetics of ferrite for the above two full-hard LCM steel were investigated using differential scanning calorimetry and the Friedman differential isoconversional method. The recrystallisation kinetics of ferrite for the two deformed states showed different behaviour. Regarding a fixed degree of cold-rolling deformation, the soaking temperature was found as the manageable parameter to control YS during CAP. Consequently, a suitable YS of the 50% cold-rolled LCM steel was achieved by setting the soaking temperature at 773°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.