Aging is associated with increased oxidative stress. Muscle levels of oxidative stress are further elevated with exercise. The purpose of this study was to determine if dietary antioxidant supplementation would improve muscle function and cellular markers of oxidative stress in response to chronic repetitive loading in aging. The dorsiflexors of the left limb of aged and young adult Fischer 344 Brown x Norway rats were loaded 3 times weekly for 4.5 weeks using 80 maximal stretch-shortening contractions per session. The contralateral limb served as the intraanimal control. The rats were randomly assigned to a diet supplemented with Vitamin E and Vitamin C or normal non-supplemented rat chow. Biomarkers of oxidative stress were measured in the tibialis anterior muscle. Repetitive loading exercise increased maximal isometric force, negative and positive work in the dorsiflexors of young adult rats. Only positive work increased in the aged animals that were supplemented with Vitamin E and C. Markers of oxidative stress (H 2 O 2, total GSH, GSH/GSSG ratio, malondialdehyde and 8-OHdG) increased in the tibialis anterior muscles from aged and young adult animals with repetitive loading, but Vitamin E and C supplements attenuated this increase. MnSOD activity increased with supplementation in the young adult animals. CuZnSOD and catalase activity increased with supplementation in young adult and aged animals and GPx activity increased with exercise in the non-supplemented young adult and aged animals. The increased levels of endogenous antioxidant enzymes after Vitamin E and C supplementation appear to be regulated by post-transcriptional modifications that are affected differently by age, exercise, and supplementation. These data suggest that antioxidant supplementation improves indices of oxidative stress associated with repetitive loading exercise and aging and improve the positive work output of muscles in aged rodents.
BACKGROUND Osteoarthritis (OA) is a multifactorial disease with strong genetic and occupational components. Although published studies have described several risk factors for OA, very few studies have investigated the occupational and genetic factors that contribute to this debilitating condition. OBJECTIVE To describe occupational and genetic factors that may contribute to the risk of developing (OA). METHODS A literature search was conducted in PubMed using the search terms osteoarthritis, occupation, work, and genetics. RESULTS Heavy physical work load was the most common occupational risk factor for OA in several anatomical locations. Other factors include kneeling and regular stair climbing, crawling, bending and whole body vibration, and repetitive movements. Numerous studies have also shown the influence of genetic variability in the pathogenesis of OA. Genetic variants of several groups of genes e.g., cartilage extracellular matrix structural genes and the genes related to bone density have been implicated in disease pathogenesis. CONCLUSION This review shows that occupational factors were extensively studied in knee OA unlike OA of other anatomical regions. Although genetic association studies performed to date identified a number of risk variants, some of these associations have not been consistently replicated across different studies and populations. Therefore, more research is needed.
The objective of this research was to investigate skeletal muscle response to a chronic administration of stretch-shortening cycles (SSCs) in young and old rats. Dorsiflexor muscles of old (30 months, n = 5) and young (12 weeks, n = 6) rats were exposed 3 times/week for 4.5 weeks to a protocol of 80 maximal SSCs per exposure in vivo. Skeletal muscle response was characterized by isometric and dynamic performance, as well as by muscle wet mass and quantitative morphological analyses following the exposure period. The performance of the young and old groups was not statistically different at the start of the exposure. By the end of the exposure, however, a statistical difference was noted, as performance increased significantly in the young animals and decreased significantly in the old animals. Muscle wet mass of the left tibialis anterior (TA) in the treated limb was significantly greater in the youngthan in the old animals (p < 0.001), whereas there was no difference in the contra-lateral TA. No degenerative myofibers or changes in non-cellular interstitium were noted in either age group, but a significant increase was observed in the volume of the cellular interstitium in the exposed limb of the old animals (p = 0.01), which is indicative of an inflammatory response. Thus, a chronic exposure of SSCs results in significant performance increase and muscle hypertrophy in young animals, and a significant performance decrease and an increased cellular interstitial response in old animals. These findings suggest that age may impair the ability of skeletal muscle to adapt to repetitive mechanical loading, even in the absence of degeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.