We present an analysis of the host properties of 85 224 emission-line galaxies selected from the Sloan Digital Sky Survey. We show that Seyferts and low-ionization narrow emission-line regions (LINERs) form clearly separated branches on the standard optical diagnostic diagrams. We derive a new empirical classification scheme which cleanly separates star-forming galaxies, composite active galactic nucleus-H II (AGN-H II) galaxies, Seyferts and LINERs and we study the host galaxy properties of these different classes of objects. LINERs are older, more massive, less dusty, less concentrated, and they have higher velocity dispersions and lower [O III] luminosities than Seyfert galaxies have. Seyferts and LINERs are most strongly distinguished by their [O III] luminosities. We then consider the quantity L[O III]/σ 4 , which is an indicator of the black hole accretion rate relative to the Eddington rate. Remarkably, we find that at fixed L[O III]/σ 4 , all differences between Seyfert and LINER host properties disappear. LINERs and Seyferts form a continuous sequence, with LINERs dominant at low L/L EDD and Seyferts dominant at high L/L EDD . These results suggest that the majority of LINERs are AGN and that the Seyfert/LINER dichotomy is analogous to the high/low-state models and show that pure LINERs require a harder ionizing radiation field with lower ionization parameter than required by Seyfert galaxies, consistent with the low and high X-ray binary states.
We present a new library of fully-radiative shock models calculated with the MAPPINGS III shock and photoionization code. The library consists of grids of models with shock velocities in the range v=100-1000 km/s and magnetic parameters B/sqrt(n) of 10^-4 - 10 muG cm^(3/2) for five different atomic abundance sets, and for a pre-shock density of 1.0 cm^(-3). Additionally, Solar abundance model grids have been calculated for densities of 0.01, 0.1, 10, 100, and 1000 cm^(-3) with the same range in v and B/sqrt(n). Each model includes components of both the radiative shock and its photoionized precursor, ionized by the EUV and soft X-ray radiation generated in the radiative gas. We present the details of the ionization structure, the column densities, and the luminosities of the shock and its precursor. Emission line ratio predictions are separately given for the shock and its precursor as well as for the composite shock+precursor structure to facilitate comparison with observations in cases where the shock and its precursor are not resolved. Emission line ratio grids for shock and shock+precursor are presented on standard line ratio diagnostic diagrams, and we compare these grids to observations of radio galaxies and a sample of AGN and star forming galaxies from the Sloan Digital Sky Survey. This library is available online, along with a suite of tools to enable the analysis of the shocks and the easy creation of emission line ratio diagnostic diagrams. These models represent a significant increase in parameter space coverage over previously available models, and therefore provide a unique tool in the diagnosis of emission by shocks.Comment: 39 pages, 34 figures, accepted for publication in ApJS, April 200
We use the chemical evolution predictions of cosmological hydrodynamic simulations with our latest theoretical stellar population synthesis, photoionization and shock models to predict the strong line evolution of ensembles of galaxies from z = 3 to the present day. In this paper, we focus on the brightest optical emission-line ratios, [N II]/Hα and [O III]/Hβ. We use the optical diagnostic Baldwin-Phillips-Terlevich (BPT) diagram as a tool for investigating the spectral properties of ensembles of active galaxies. We use four redshift windows chosen to exploit new near-infrared multi-object spectrographs. We predict how the BPT diagram will appear in these four redshift windows given different sets of assumptions. We show that the position of star-forming galaxies on the BPT diagram traces the ISM conditions and radiation field in galaxies at a given redshift. Galaxies containing AGN form a mixing sequence with purely star-forming galaxies. This mixing sequence may change dramatically with cosmic time, due to the metallicity sensitivity of the optical emission-lines. Furthermore, the position of the mixing sequence may probe metallicity gradients in galaxies as a function of redshift, depending on the size of the AGN narrow line region. We apply our latest slow shock models for gas shocked by galactic-scale winds. We show that at high redshift, galactic wind shocks are clearly separated from AGN in line ratio space. Instead, shocks from galactic winds mimic high metallicity starburst galaxies. We discuss our models in the context of future large near-infrared spectroscopic surveys.
Spitzer Space Telescope and Herschel Space Observatory imaging of M31 is used, with a physical dust model, to construct maps of dust surface density, dust-to-gas ratio, starlight heating intensity, and polycyclic aromatic hydrocarbon (PAH) abundance, out to R ≈ 25 kpc. The global dust mass is M d = 5.4 × 10 7 M , the global dust/H mass ratio is M d /M H = 0.0081, and the global PAH abundance is q PAH = 0.039. The dust surface density has an inner ring at R = 5.6 kpc, a maximum at R = 11.2 kpc, and an outer ring at R ≈ 15.1 kpc. The dust/gas ratio varies from M d /M H ≈ 0.026 at the center to ∼0.0027 at R ≈ 25 kpc. From the dust/gas ratio, we estimate the interstellar mediu (ISM) metallicity to vary by a factor ∼10, from Z/Z ≈ 3 at R = 0 to ∼ 0.3 at R = 25 kpc. The dust heating rate parameter U peaks at the center, with U ≈ 35, declining to U ≈ 0.25 at R = 20 kpc. Within the central kiloparsec, the starlight heating intensity inferred from the dust modeling is close to what is estimated from the stars in the bulge. The PAH abundance reaches a peak q PAH ≈ 0.045 at R ≈ 11.2 kpc. When allowance is made for the different spectrum of the bulge stars, q PAH for the dust in the central kiloparsec is similar to the overall value of q PAH in the disk. The silicate-graphite-PAH dust model used here is generally able to reproduce the observed dust spectral energy distribution across M31, but overpredicts 500µm emission at R ≈ 2-6 kpc, suggesting that at R = 2-6 kpc, the dust opacity varies more steeply with frequency (with β ≈ 2.3 between 200 and 600µm) than in the model. Subtraction of foreground and background emission has been carried out following methods described in Aniano et al. (2012), with automatic identification of background pixels and fitting of a "tilted plane" background model (with three parameters -zero point, tilt, and tilt orientation) for 3 IRAC images in bands 1-4 were multiplied by extended source calibration factors 0.91, 0.94, 0.66, 0.74 (Reach et al. 2005). 4 MIPS images were generated by the Mips enhancer v3.10 pipeline on 2007 Jul 3. 5 The PACS and SPIRE images were processed by HIPE v9, and the Level 1 HIPE images were then processed by Scanamorphos v18.0 (Roussel 2013). We used the calibration files in HIPE v9 (version 42 for PACS, and version 10.0 for SPIRE). Intensities in the SPIRE bands were obtained by dividing the HIPE v9 flux density per beam by effective beam solid angles Ω = (1.103, 1.944, 4.183) × 10 −8 sr for SPIRE250, 350, and 500, as recommended by Griffin et al. (2013).
We present ∼kiloparsec spatial resolution maps of the CO-to-H 2 conversion factor (α CO ) and dust-to-gas ratio (DGR) in 26 nearby, star-forming galaxies. We have simultaneously solved for α CO and the DGR by assuming that the DGR is approximately constant on kiloparsec scales. With this assumption, we can combine maps of dust mass surface density, CO-integrated intensity, and H i column density to solve for both α CO and the DGR with no assumptions about their value or dependence on metallicity or other parameters. Such a study has just become possible with the availability of high-resolution far-IR maps from the Herschel key program KINGFISH, 12 CO J = (2-1) maps from the IRAM 30 m large program HERACLES, and H i 21 cm line maps from THINGS. We use a fixed ratio between the (2-1) and (1-0) lines to present our α CO results on the more typically used 12 CO J = (1-0) scale and show using literature measurements that variations in the line ratio do not affect our results. In total, we derive 782 individual solutions for α CO and the DGR. On average, α CO = 3.1 M pc −2 (K km s −1 ) −1 for our sample with a standard deviation of 0.3 dex. Within galaxies, we observe a generally flat profile of α CO as a function of galactocentric radius. However, most galaxies exhibit a lower α CO value in the central kiloparsec-a factor of ∼2 below the galaxy mean, on average. In some cases, the central α CO value can be factors of 5-10 below the standard Milky Way (MW) value of α CO,MW = 4.4 M pc −2 (K km s −1 ) −1 . While for α CO we find only weak correlations with metallicity, the DGR is well-correlated with metallicity, with an approximately linear slope. Finally, we present several recommendations for choosing an appropriate α CO for studies of nearby galaxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.