The mercury resistance (mer) operon of the gram-negative transposon Tn21 encodes not only a mercuric reductase and regulatory genes but also two inner membrane proteins (MerT and MerC) and a periplasmic protein (MerP). Although the merT, merP, and merC genes have been implicated in Hg(II) transport, the individual roles of these genes have not been established. We created in vitro precise deletion and frameshift mutations that eliminated each of the genes singly and in combination. Our results show that both merT and merP are required for Hg(II) binding but that merC is not. Both merT and merP are required for full expression of Hg(II) resistance, but loss of merP is less deleterious than loss of merT. Furthermore, mutations eliminating both merT and merP decrease resistance more than the single mutations do. In contrast, mutating merC had no effect on Hg(II) resistance. Both the merT and merP mutations increase the threshold Hg(II) concentration for induction of merA-lacZ transcriptional fusions and cause an increase in the maximal expression level. In contrast, the merC mutation had little effect on the threshold inducing concentration of Hg(II) but decreased the level of expression. Our results show that merT and merP alone are sufficient to specify a mercury transport system. The role of merC remains obscure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.