Objective First-trimester aneuploidy screening has high detection rates and low false-positive rates. Their use as well as the implementation of non-invasive prenatal testing may affect specialty training in prenatal diagnosis procedures.
Study design
Background
Personal cancer diagnosis and family cancer history factor into which individuals should undergo genetic testing for hereditary breast and ovarian cancer (HBOC) syndrome. Family history is often determined in the research setting through kindreds with disease clusters, or clinically from self‐report. The population prevalence of individuals with diagnostic characteristics and/or family cancer history meeting criteria for HBOC testing is unknown.
Methods
Utilizing Surveillance, Epidemiology, and End Results (SEER) cancer registry data and a research resource linking registry records to genealogies, the Utah Population Database, the population‐based prevalence of diagnostic and family history characteristics meeting National Comprehensive Cancer Network (NCCN) criteria for HBOC testing was objectively assessed.
Results
Among Utah residents with an incident breast cancer diagnosis 2010‐2015 and evaluable for family history, 21.6% met criteria for testing based on diagnostic characteristics, but the proportion increased to 62.9% when family history was evaluated. The proportion of cases meeting testing criteria at diagnosis was 94% for ovarian cancer, 23% for prostate cancer, and 51.1% for pancreatic cancer. Among an unaffected Utah population of approximately 1.7 million evaluable for family history, 197,601 or 11.6% met testing criteria based on family history.
Conclusions
This study quantifies the population‐based prevalence of HBOC criteria using objectively determined genealogy and cancer incidence data. Sporadic breast cancer likely represents a portion of the high prevalence of family cancer history seen in this study. These results underline the importance of establishing presence of a deleterious mutation in an affected family member, per NCCN guidelines, before testing unaffected relatives.
The clinical use of genomic analysis has expanded rapidly resulting in an increased availability and utility of genomic information in clinical care. We have developed an infrastructure utilizing informatics tools and clinical processes to facilitate the use of whole genome sequencing data for population health management across the healthcare system. Our resulting framework scaled well to multiple clinical domains in both pediatric and adult care, although there were domain specific challenges that arose. Our infrastructure was complementary to existing clinical processes and well-received by care providers and patients. Informatics solutions were critical to the successful deployment and scaling of this program. Implementation of genomics at the scale of population health utilizes complicated technologies and processes that for many health systems are not supported by current information systems or in existing clinical workflows. To scale such a system requires a substantial clinical framework backed by informatics tools to facilitate the flow and management of data. Our work represents an early model that has been successful in scaling to 29 different genes with associated genetic conditions in four clinical domains. Work is ongoing to optimize informatics tools; and to identify best practices for translation to smaller healthcare systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.