The field of RNA nanotechnology is rapidly emerging. RNA can be manipulated with the simplicity characteristic of DNA to produce nanoparticles with a diversity of quaternary structures by self-assembly. Additionally RNA is tremendously versatile in its function and some RNA molecules display catalytic activities much like proteins. Thus, RNA has the advantage of both worlds. However, the instability of RNA has made many scientists flinch away from RNA nanotechnology. Other concerns that have deterred the progress of RNA therapeutics include the induction of interferons, stimulation of cytokines, and activation of other immune systems, as well as short pharmacokinetic profiles in vivo. This review will provide some solutions and perspectives on the chemical and thermodynamic stability, in vivo half-life and biodistribution, yield and production cost, in vivo toxicity and side effect, specific delivery and targeting, as well as endosomal trapping and escape.
The field of RNA nanotechnology is rapidly emerging. RNA can be manipulated with the simplicity characteristic of DNA to produce nanoparticles with a diversity of quaternary structures by self-assembly. Additionally RNA is tremendously versatile in its function and some RNA molecules display catalytic activities much like proteins. Thus, RNA has the advantage of both worlds. However, the instability of RNA has made many scientists flinch away from RNA nanotechnology. Other concerns that have deterred the progress of RNA therapeutics include the induction of interferons, stimulation of cytokines, and activation of other immune systems, as well as short pharmacokinetic profiles in vivo. This review will provide some solutions and perspectives on the chemical and thermodynamic stability, in vivo half-life and biodistribution, yield and production cost, in vivo toxicity and side effect, specific delivery and targeting, as well as endosomal trapping and escape.
Hemolymph was examined in young (ca. 86 days old), mature (ca. 163 days old), and old (ca. 294 days old) Aplysia for age-related changes in constituent proteins. In young, mature, and old animals protein concentrations were 1.6 +/- 0.27, 1.41 +/- 0.53, and 1.45 +/- 0.43 mg.ml-1, respectively. The copper-containing respiratory protein, hemocyanin, measured by determining the copper concentration, was found to increase significantly from young (0.98 +/- 0.51 microgram.ml-1) to mature (2.02 +/- 0.95 micrograms.ml-1) Aplysia, with little change between mature and old (1.92 +/- 0.43 micrograms.ml-1) animals. These findings were consistent with the results obtained when hemocyanin was directly measured by spectrophotometric absorption at 340 nm. Acetylcholinesterase (AChE) was present in the hemolymph of Aplysia. Its activity was highest in mature animals (3121 +/- 1627 units.mg-1) and least in old animals (1463 +/- 599 units.mg-1). Young animals had intermediate levels (2080 +/- 762 units.mg-1). SDS-PAGE revealed a distinct pattern of protein bands for hemolymph from each age group; hemolymph from the young group contained six prominent protein bands with molecular weights (MW) from 13 to 300 kDa. Hemolymph of mature and old animals exhibited four and three prominent protein bands, respectively, with MW between 45 and 300 kDa. A prominent band at 97 kDa was present in samples from the mature group, but was faint in samples from the old group and absent in samples from the young group.(ABSTRACT TRUNCATED AT 250 WORDS)
Background: Lung cancer is the leading cause of cancer mortality in the United States (U.S.). Squamous cell carcinoma (SQCC) represents 22.6% of all lung cancers nationally, and 26.4% in Appalachian Kentucky (AppKY), where death from lung cancer is exceptionally high. The Cancer Genome Atlas (TCGA) characterized genetic alterations in lung SQCC, but this cohort did not focus on AppKY residents.Methods: Whole-exome sequencing was performed on tumor and normal DNA samples from 51 lung SQCC subjects from AppKY. Somatic genomic alterations were compared between the AppKY and TCGA SQCC cohorts.Results: From this AppKY cohort, we identified an average of 237 nonsilent mutations per patient and, in comparison with TCGA, we found that PCMTD1 (18%) and IDH1 (12%) were more commonly altered in AppKY versus TCGA. Using IDH1 as a starting point, we identified a mutually exclusive mutational pattern (IDH1, KDM6A, KDM4E, JMJD1C) involving functionally related genes. We also found actionable mutations (10%) and/or intermediate or high-tumor mutation burden (65%), indicating potential therapeutic targets in 65% of subjects.Conclusions: This study has identified an increased percentage of IDH1 and PCMTD1 mutations in SQCC arising in the AppKY residents versus TCGA, with population-specific implications for the personalized treatment of this disease.Impact: Our study is the first report to characterize genomic alterations in lung SQCC from AppKY. These findings suggest population differences in the genetics of lung SQCC between AppKY and U.S. populations, highlighting the importance of the relevant population when developing personalized treatment approaches for this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.