This paper advocates a data summarization approach based on distance rather than the traditional time period when developing individualized machine learning models for fuel consumption. This approach is used in conjunction with seven predictors derived from vehicle speed and road grade to produce a highly predictive neural network model for average fuel consumption in heavy vehicles. The proposed model can easily be developed and deployed for each individual vehicle in a fleet in order to optimize fuel consumption over the entire fleet. The predictors of the model are aggregated over fixed window sizes of distance traveled. Different window sizes are evaluated and the results show that a 1 km window is able to predict fuel consumption with a 0.91 coefficient of determination and mean absolute peak-to-peak percent error less than 4% for routes that include both city and highway duty cycle segments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.