PURPOSE To compare biceps femoris long-head (BFlh) fascicle lengths (Lfs) obtained with different ultrasound-based approaches: 1) single ultrasound images and linear Lf extrapolation; 2) single ultrasound images and one of two different trigonometric equations (termed equations A and B); and 3) extended field of view (EFOV) ultrasound images. METHODS Thirty-seven elite alpine skiers (21.7±2.8 yrs) without a previous history of hamstring strain injury were tested. Single ultrasound images were collected with a 5 cm linear transducer from BFlh at 50% femur length and were compared with whole muscle scans acquired by EFOV ultrasound. RESULTS The intra-session reliability (ICC3,k = intraclass correlation coefficient) of Lf measurements was very high for both single ultrasound images (i.e., Lf estimated by linear extrapolation; ICC3,k = 0.96-0.99, SEM = 0.18 cm) and EFOV scans (ICC3,k = 0.91-0.98, SEM = 0.19 cm). Although extrapolation methods showed cases of overestimation and underestimation of Lf when compared with EFOV scans, mean Lf measured from EFOV scans (8.07±1.36 cm) was significantly shorter than Lf estimated by trigonometric equations A (9.98±2.12 cm, P<0.01) and B (8.57±1.59 cm, P=0.03), but not significantly different from Lf estimated with manual linear extrapolation (MLE) (8.40±1.68 cm, p=0.13). Bland-Altman analyses revealed mean differences in Lfs obtained from EFOV scans and those estimated from equation A, equation B and MLE of 1.91±2.1 cm, 0.50±1.0 cm and 0.33±1.0 cm, respectively. CONCLUSIONS The typical extrapolation methods used for estimating Lf from single ultrasound images are reliable within the same session, but not accurate for estimating BFlh Lf at rest with a 5-cm FOV. We recommend that EFOV scans are implemented to accurately determine intervention-related Lf changes in BFlh.
Background. Muscles not only shorten during contraction to perform mechanical work, but they also bulge radially because of the isovolumetric constraint on muscle fibres. Muscle bulging may have important implications for muscle performance, however quantifying three-dimensional (3D) muscle shape changes in human muscle is problematic because of difficulties with sustaining contractions for the duration of an in vivo scan. Although two-dimensional ultrasound imaging is useful for measuring local muscle deformations, assumptions must be made about global muscle shape changes, which could lead to errors in fully understanding the mechanical behaviour of muscle and its surrounding connective tissues, such as aponeurosis. Therefore, the aims of this investigation were (a) to determine the intra-session reliability of a novel 3D ultrasound (3DUS) imaging method for measuring in vivo human muscle and aponeurosis deformations and (b) to examine how contraction intensity influences in vivo human muscle and aponeurosis strains during isometric contractions.Methods. Participants (n = 12) were seated in a reclined position with their left knee extended and ankle at 90° and performed isometric dorsiflexion contractions up to 50% of maximal voluntary contraction. 3DUS scans of the tibialis anterior (TA) muscle belly were performed during the contractions and at rest to assess muscle volume, muscle length, muscle cross-sectional area, muscle thickness and width, fascicle length and pennation angle, and central aponeurosis width and length. The 3DUS scan involved synchronous B-mode ultrasound imaging and 3D motion capture of the position and orientation of the ultrasound transducer, while successive cross-sectional slices were captured by sweeping the transducer along the muscle.Results. 3DUS was shown to be highly reliable across measures of muscle volume, muscle length, fascicle length and central aponeurosis length (ICC ≥ 0.98, CV < 1%). The TA remained isovolumetric across contraction conditions and progressively shortened along its line of action as contraction intensity increased. This caused the muscle to bulge centrally, predominantly in thickness, while muscle fascicles shortened and pennation angle increased as a function of contraction intensity. This resulted in central aponeurosis strains in both the transverse and longitudinal directions increasing with contraction intensity.Discussion. 3DUS is a reliable and viable method for quantifying multidirectional muscle and aponeurosis strains during isometric contractions within the same session. Contracting muscle fibres do work in directions along and orthogonal to the muscle’s line of action and central aponeurosis length and width appear to be a function of muscle fascicle shortening and transverse expansion of the muscle fibres, which is dependent on contraction intensity. How factors other than muscle force change the elastic mechanical behaviour of the aponeurosis requires further investigation.
The factors that drive variable aponeurosis behaviors in active versus passive muscle may alter the longitudinal stiffness of the aponeurosis during contraction, which may change the fascicle strains for a given muscle force. However, it remains unknown whether these factors can drive variable aponeurosis behaviors across different muscle-tendon unit (MTU) lengths and influence the subsequent fascicle strains during contraction. Here, we used ultrasound and elastography techniques to examine in vivo muscle fascicle behavior and central aponeurosis deformations of human tibialis anterior (TA) during force-matched voluntary isometric dorsiflexion contractions at three MTU lengths. We found that increases in TA MTU length increased both the length and apparent longitudinal stiffness of the central aponeurosis at low and moderate muscle forces ( < 0.01). We also found that increased aponeurosis stiffness was directly related to reduced magnitudes of TA muscle fascicle shortening for the same change in force ( < 0.01). The increase in slope and shift to longer overall lengths of the active aponeurosis force-length relationship as MTU length increased was likely due to a combination of parallel lengthening of aponeurosis and greater transverse aponeurosis strains. This study provides in vivo evidence that human aponeurosis stiffness is increased from low to moderate forces and that the fascicle strains for a given muscle force are MTU length dependent. Further testing is warranted to determine whether MTU length-dependent stiffness is a fundamental property of the aponeurosis in pennate muscles and evaluate whether this property can enhance muscle performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.