Thermal performance curves (TPCs), which quantify how an ectotherm's body temperature (T b ) affects its performance or fitness, are often used in an attempt to predict organismal responses to climate change. Here, we examine the key -but often biologically unreasonable -assumptions underlying this approach; for example, that physiology and thermal regimes are invariant over ontogeny, space and time, and also that TPCs are independent of previously experienced T b. We show how a critical consideration of these assumptions can lead to biologically useful hypotheses and experimental designs. For example, rather than assuming that TPCs are fixed during ontogeny, one can measure TPCs for each major life stage and incorporate these into stage-specific ecological models to reveal the life stage most likely to be vulnerable to climate change. Our overall goal is to explicitly examine the assumptions underlying the integration of TPCs with T b , to develop a framework within which empiricists can place their work within these limitations, and to facilitate the application of thermal physiology to understanding the biological implications of climate change.
All climate change scenarios predict an increase in both global temperature means and the magnitude of seasonal and diel temperature variation. The nonlinear relationship between temperature and biological processes means that fluctuating temperatures lead to physiological, life history, and ecological consequences for ectothermic insects that diverge from those predicted from constant temperatures. Fluctuating temperatures that remain within permissive temperature ranges generally improve performance. By contrast, those which extend to stressful temperatures may have either positive impacts, allowing repair of damage accrued during exposure to thermal extremes, or negative impacts from cumulative damage during successive exposures. We discuss the mechanisms underlying these differing effects. Fluctuating temperatures could be used to enhance or weaken insects in applied rearing programs, and any prediction of insect performance in the field—including models of climate change or population performance—must account for the effect of fluctuating temperatures.
Winter is a key driver of individual performance, community composition, and ecological interactions in terrestrial habitats. Although climate change research tends to focus on performance in the growing season, climate change is also modifying winter conditions rapidly.Changes to winter temperatures, the variability of winter conditions, and winter snow cover can interact to induce cold injury, alter energy and water balance, advance or retard phenology, and modify community interactions. Species vary in their susceptibility to these winter drivers, hampering efforts to predict biological responses to climate change. Existing frameworks for predicting the impacts of climate change do not incorporate the complexity of organismal responses to winter. Here, we synthesise organismal responses to winter climate change, and use this synthesis to build a framework to predict exposure and sensitivity to negative impacts, and that can be used to estimate the vulnerability of species to winter climate change. We describe the importance of relationships between winter conditions and performance during the growing season in determining fitness, and demonstrate how summer and winter processes are linked.Incorporating winter into current models will require concerted effort from theoreticians and empiricists, and the expansion of current growing season studies to incorporate winter.
Insect performance is limited by the temperature of the environment, and in temperate, polar, and alpine regions, the majority of insects must face the challenge of exposure to low temperatures. The physiological response to cold exposure shapes the ability of insects to survive and thrive in these environments, and can be measured, without great technical difficulty, for both basic and applied research. For example, understanding insect cold tolerance allows us to predict the establishment and spread of insect pests and biological control agents. Additionally, the discipline provides the tools for drawing physiological comparisons among groups in wider studies that may not be focused primarily on the ability of insects to survive the cold. Thus, the study of insect cold tolerance is of a broad interest, and several reviews have addressed the theories and advances in the field. Here, however, we aim to clarify and provide rationale for common practices used to study cold tolerance, as a starter's guide for newcomers to the field, students, and those wishing to incorporate cold tolerance into a broader study. We cover the 'tried and true' measures of insect cold tolerance, the equipment necessary for these measurement, and summarize the ecological and biological significance of each. Additionally, we provide a suggested framework and workflow for measuring cold tolerance and low temperature performance in insects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.