This article discusses the fabrication of planar and nonplanar 3D paper microfluidic circuits through the use of patterned spray adhesive application and origami techniques. The individual paper layers are held together via semi-permanent adhesive bonds without the need for external clamps. Semi-permanent bonds accommodate the repeated folding and unfolding required by complex origami device structures and allow the device to be unfolded post-use to view internally displayed results. Combinations of adhesive patterns and fluid channel widths were identified that did not prevent the fluid from traveling between layers and through the entire circuit. Further, this method was extended to nonplanar 3D paper microfluidic circuits, demonstrated via multi-fluid wicking within a modified origami peacock. Such nonplanar 3D paper microfluidic circuits are expected to offer an entirely new platform for exploring new designs and functions of paper analytical devices.
In paper-based microfluidics, the simplest devices are colorimetric, giving qualitative results. However, getting quantitative data can be quite a bit more difficult. Distance-based devices provide a user-friendly means of obtaining quantitative data without the need for any additional equipment, simply by using an included ruler or calibrated markings. This article details the development of a quantitative DNA detection device that utilizes the aggregation of polystyrene microspheres to affect the distance that microspheres wick through filter paper. The microspheres are conjugated to single-stranded DNA (ssDNA) oligomers that are partially complementary to a target strand and, in the presence of the target strand, form a three-strand complex, resulting in the formation of aggregates. The higher the concentration of the target strand, the larger the aggregate, and the shorter the distance wicked by the microspheres. This behavior was investigated across a wide range of target concentrations and under different incubation times to understand aggregate formation. The device was then used to successfully detect a target strand spiked in extracted plant DNA.
Paper-based microfluidic devices are an attractive platform for developing low-cost, point-of-care diagnostic tools. As paper-based devices’ detection chemistries become more complex, more complicated devices are required, often entailing the sequential delivery of different liquids or reagents to reaction zones. Most research into flow control has been focused on introducing delays. However, delaying the flow can be problematic due to increased evaporation leading to sample loss. We report the use of a CO2 laser to uniformly etch the surface of the paper to modify wicking speeds in paper-based microfluidic devices. This technique can produce both wicking speed increases of up to 1.1× faster and decreases of up to 0.9× slower. Wicking speeds can be further enhanced by etching both sides of the paper, resulting in wicking 1.3× faster than unetched channels. Channels with lengthwise laser-etched grooves were also compared to uniformly etched channels, with the most heavily grooved channels wicking 1.9× faster than the fastest double-sided etched channels. Furthermore, sealing both sides of the channel in packing tape results in the most heavily etched channels, single-sided, double-sided, and grooved, wicking over 13× faster than unetched channels. By selectively etching individual channels, different combinations of sequential fluid delivery can be obtained without altering any channel geometry. Laser etching is a simple process that can be integrated into the patterning of the device and requires no additional materials or chemicals, enabling greater flow control for paper-based microfluidic devices.
We demonstrate the use of patterned aerosol adhesives to construct both planar and nonplanar 3D paper microfluidic devices. By spraying an aerosol adhesive through a metal stencil, the overall amount of adhesive used in assembling paper microfluidic devices can be significantly reduced. We show on a simple 4-layer planar paper microfluidic device that the optimal adhesive application technique and device construction style depends heavily on desired performance characteristics. By moderately increasing the overall area of a device, it is possible to dramatically decrease the wicking time and increase device success rates while also reducing the amount of adhesive required to keep the device together. Such adhesive application also causes the adhesive to form semi-permanent bonds instead of permanent bonds between paper layers, enabling single-use devices to be non-destructively disassembled after use. Nonplanar 3D origami devices also benefit from the semi-permanent bonds during folding, as it reduces the likelihood that unrelated faces may accidently stick together. Like planar devices, nonplanar structures see reduced wicking times with patterned adhesive application vs uniformly applied adhesive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.