Can kindreds with tooth agenesis caused by MSX1 or PAX9 mutations be distinguished by their phenotypes? We have identified an MSX1 frameshift mutation (g.62dupG, p.G22RfsX168) that causes non-syndromic autosomal-dominant oligodontia, featuring the absence of multiple permanent teeth, including all second bicuspids and mandibular central incisors. The dominant phenotype is apparently due to haploinsufficiency. We analyzed patterns of partial tooth agenesis in seven kindreds with defined MSX1 mutations and ten kindreds with defined PAX9 mutations. The probability of missing a particular type of tooth is always bilaterally symmetrical, but differences exist between the maxilla and mandible. MSX1-associated oligodontia typically includes missing maxillary and mandibular second bicuspids and maxillary first bicuspids. The most distinguishing feature of MSX1-associated oligodontia is the frequent (75%) absence of maxillary first bicuspids, while the most distinguishing feature of PAX9-associated oligodontia is the frequent (> 80%) absence of the maxillary and mandibular second molars.
Mutations in the human amelogenin gene (AMELX, Xp22.3) cause a phenotypically diverse set of inherited enamel malformations. We hypothesize that the effects of specific mutations on amelogenin protein structure and expression will correlate with the enamel phenotype, clarify amelogenin structure/function relationships, and improve the clinical diagnosis of X-linked amelogenesis imperfecta (AI). We have identified two kindreds with X-linked AI and characterized the AMELX mutations underlying their AI phenotypes. The two missense mutations are both in exon 2 and affect the translation initiation codon and/or the secretion of amelogenin (p.M1T and p.W4S), resulting in hypoplastic enamel. Primary anterior teeth from affected females with the p.M1T mutation were characterized by light and scanning electron microscopy. The thin enamel had defective prism organization, and the surface was rough and pitted. Dentin was normal. The severity of the enamel phenotype correlated with the predicted effects of the mutations on amelogenin expression and secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.