Characterization of uptake and loss dynamics is critical to understanding risks associated with contaminant exposure in aquatic animals. Dynamics are especially important in addressing questions such as why coexisting species in nature accumulate different levels of a contaminant. Here we manipulated copper (Cu) stable isotopic ratios (as an alternative to radioisotopes) to describe for the first time Cu dynamics in a freshwater invertebrate, the bivalve Corbicula fluminea. In the laboratory, Corbicula uptake and loss rate constants were determined from an environmentally realistic waterborne exposure to 65Cu (5.7 microg L(-1)). That is, we spiked deionized water with Cu that was 99.4% 65Cu. Net tracer uptake was detectable after 1 day and strongly evident after 4 days. Thus, short-term exposures necessary to determine uptake dynamics are feasible with stable isotopes of Cu. In Corbicula, 65Cu depuration was biphasic. An unusually low rate constant of loss (0.0038 d(-1)) characterized the slow component of efflux, explaining why Corbicula strongly accumulates copper in nature. We incorporated our estimates of rate constants for dissolved 65Cu uptake and physiological efflux into a bioaccumulation model and showed that dietary exposure to Cu is likely an important bioaccumulation pathway for Corbicula.
Three collecting trips were coordinated in April, May, and August 2006 to sample the water column and benthos of hypereutrophic Upper Klamath Lake (OR, USA) through the annual cyanophyte bloom of Aphanizomenon flos-aquae. A pore-water profiler was designed and fabricated to obtain the first high-resolution (centimeter-scale) estimates of the vertical concentration gradients of macro- and micronutrients for diffusive-flux determinations. A consistently positive benthic flux for soluble reactive phosphorus (SRP) was observed with solute release from the sediment, ranging between 0.4 and 6.1 mg/m(2)/d. The mass flux over an approximate 200-km(2) lake area was comparable in magnitude to riverine inputs. An additional concern related to fish toxicity was identified when dissolved ammonium also displayed consistently positive benthic fluxes of 4 to 134 mg/m(2)/d, again comparable to riverine inputs. Although phosphorus was a logical initial choice by water quality managers for the limiting nutrient when nitrogen-fixing cyanophytes dominate, initial trace-element results from the lake and major inflowing tributaries suggested that the role of iron limitation on primary productivity should be investigated. Dissolved iron became depleted in the lake water column during the course of the algal bloom, while dissolved ammonium and SRP increased. Elevated macroinvertebrate densities, at least of the order of 10(4) individuals/m(2), suggested that the diffusive-flux estimates may be significantly enhanced by bioturbation. In addition, heat-flux modeling indicated that groundwater advection of nutrients could also significantly contribute to internal nutrient loading. Accurate environmental assessments of lentic systems and reasonable expectations for point-source management require quantitative consideration of internal solute sources.
Guadalupe Reservoir (GUA), California, and Lahontan Reservoir (LAH), Nevada, U.S. are both affected either directly or indirectly by the legacy of gold and silver mining in the Sierra Nevada during the nineteenth century. Analysis of total mercury in fish from these lentic systems consistently indicate elevated concentrations (>1 microg x g(-1) wet weight; hereinafter, all concentrations are reported as wet weight unless indicated otherwise) well above the U.S. Environmenal Protection Agency's human consumption advisory level for fish (<0.3 microg x g(-1)). Replicate X-ray absorption near edge structure (XANES) analyses on largemouth bass and hybrid striped bass from GUA and LAH were performed to determine predominant chemical species of mercury accumulated by these high-trophic-level piscivores that are exposed to elevated mercury through trophic transfer in mining-impacted lentic systems. Despite distinct differences in mercury source, the proximity of the source, and concentrations of complexing ligands, results of XANES analysis clearly indicated that mercury accumulated in these individual fish from the two reservoirs were dominated by methylmercury cysteine complexes. These findings are consistent with results from commercial fish species inhabiting marine environments which are presumed to include differing mercury sources (e.g., atmospheric, hydrothermal, or benthic). The dominance of methylmercury cysteine complexes in muscle tissues of fish obtained from such contrasting environments and exposure conditions suggests that a generic toxicological model for the consumption of fish could be applicable over a wide range of ecologic settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.