The anti-cancer effects of metformin, the most widely used drug for type 2 diabetes, alone or in combination with ionizing radiation were studied with MCF-7 human breast cancer cells and FSaII mouse fibrosarcoma cells. Clinically achievable concentrations of metformin caused significant clonogenic death in cancer cells. Importantly, metformin was preferentially cytotoxic to cancer stem cells relative to non-cancer stem cells. Metformin increased the radiosensitivity of cancer cells in vitro, and significantly enhanced the radiation-induced growth delay of FSaII tumors (s.c.) in the legs of C3H mice. Both metformin and ionizing radiation activated AMPK leading to inactivation of mTOR and suppression of its downstream effectors such as S6K1 and 4EBP1, a crucial signaling pathway for proliferation and survival of cancer cells, in vitro as well as in the in vivo tumors. Conclusion: Metformin kills and radiosensitizes cancer cells and eradicates radioresistant cancer stem cells by activating AMPK and suppressing mTOR.
We have demonstrated that the designed peptide anginex displays potent antiangiogenic activity. The aim of our study was to investigate the effect of anginex on established tumor vasculature as an adjuvant to radiation therapy of solid tumors. In the MA148 human ovarian carcinoma athymic mouse model, anginex (10 mg/kg) in combination with a suboptimal dose of radiation (5 Gy once weekly for 4 weeks) caused tumors to regress to an impalpable state. In the more aggressive SCK murine mammary carcinoma model, combination of anginex and a single radiation dose of 25 Gy synergistically increased the delay in tumor growth compared to the tumor growth delay caused by either treatment alone. Immunohistochemical analysis also demonstrated significantly enhanced effects of combined treatment on tumor microvessel density and tumor or endothelial cell proliferation and viability. In assessing physiologic effects of anginex, we observed a reduction in tumor perfusion and tumor oxygenation in SCK tumors after 5-7 daily treatments with anginex with no reduction in blood pressure. To test anginex as a radiosensitizer, additional studies using SCK tumors were performed. Three daily i.p. injections of anginex were able to enhance the effect of 2 radiation doses of 10 Gy, resulting in 50% complete responses, whereas the known antiangiogenic agent angiostatin did not enhance the radiation response of SCK tumors. Mechanistically, it appears that anginex functions as an endothelial cell-specific radiosensitizer because anginex showed no effect on in vitro radiosensitivity of SCK or MA148 tumor cells, whereas anginex significantly enhanced the in vitro radiosensitivity of 2 endothelial cell types. This work supports the idea that the combination of the antiangiogenic agent anginex and radiation may lead to improved clinical outcome in treating cancer patients. ' 2005 Wiley-Liss, Inc.
Metformin, the most widely prescribed drug for treatment of type 2 diabetes, has been shown to exert significant anticancer effects. Hyperthermia has been known to kill cancer cells and enhance the efficacy of various anti-cancer drugs and radiotherapy. We investigated the combined effects of metformin and hyperthermia against MCF-7 and MDA-MB-231 human breast cancer cell, and MIA PaCa-2 human pancreatic cancer cells. Incubation of breast cancer cells with 0.5–10 mM metformin for 48 h caused significant clonogenic cell death. Culturing breast cancer cells with 30 µM metformin, clinically relevant plasma concentration of metformin, significantly reduced the survival of cancer cells. Importantly, metformin was preferentially cytotoxic to CD44high/CD24low cells of MCF-7 cells and, CD44high/CD24high cells of MIA PaCa-2 cells, which are known to be cancer stem cells (CSCs) of MCF-7 cells and MIA PaCa-2 cells, respectively. Heating at 42°C for 1 h was slightly toxic to both cancer cells and CSCs, and it markedly enhanced the efficacy of metformin to kill cancer cells and CSCs. Metformin has been reported to activate AMPK, thereby suppressing mTOR, which plays an important role for protein synthesis, cell cycle progression, and cell survival. For the first time, we show that hyperthermia activates AMPK and inactivates mTOR and its downstream effector S6K. Furthermore, hyperthermia potentiated the effect of metformin to activate AMPK and inactivate mTOR and S6K. Cell proliferation was markedly suppressed by metformin or combination of metformin and hyperthermia, which could be attributed to activation of AMPK leading to inactivation of mTOR. It is conclude that the effects of metformin against cancer cells including CSCs can be markedly enhanced by hyperthermia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.