Importance: While congenital malformations and genetic diseases are a leading cause of early infant death, the contribution of single-gene disorders in this group is undetermined. Objective: To determine the diagnostic yield and utility of clinical exome sequencing in critically ill infants. Design, setting, participants: Clinical exome sequencing was performed on 278 unrelated infants within the first 100 days of life, admitted to Texas Children’s Hospital in Houston, over a period of five years, between December 2011 and January 2017. Exome sequencing types included proband exome, trio exome, and critical trio exome, a rapid genomic assay for seriously-ill infants. Main outcomes and measures: Indications for testing, diagnostic yield of clinical exome sequencing, turnaround time, molecular findings, patient age at diagnosis, and impact on medical management in a group of critically ill infants suspected to have genetic disorders. Results: Clinical indications for exome sequencing included a wide range of medical concerns. Overall, molecular diagnosis was achieved in 102/278 infants by clinical exome sequencing with a diagnostic yield of 36.7%. The diagnosis affected medical management in 53/102 (52.0%) of infants, with substantial impact on informed redirection of care, initiation of new subspecialist care, medication/dietary modifications, and furthering life-saving procedures in select patients. Critical trio exome revealed a molecular diagnosis in 32/63 infants (50.8%) at 33.1±5.6 days of life with turnaround time (TAT) of 13.0 ± 0.4 days. Clinical care was altered by the diagnosis in 23/32 (71.9%) patients. The diagnostic yield, patient age at diagnosis, and medical impact in the group that underwent critical trio exome is significantly different comparing to regular exome testing. For deceased infants (n=81), genetic disorders were molecular diagnosed in 39 (48.1%) by exome sequencing with implications for recurrence risk counseling. Conclusions and relevance: Exome sequencing is a powerful tool for the diagnostic evaluation of critically ill infants with suspected monogenic disorders in the neonatal and pediatric ICUs, leading to notable impact on clinical decision-making.
Schaaf‐Yang Syndrome (SYS) is a genetic disorder caused by truncating pathogenic variants in the paternal allele of the maternally imprinted, paternally expressed gene MAGEL2, located in the Prader‐Willi critical region 15q11‐15q13. SYS is a neurodevelopmental disorder that has clinical overlap with Prader‐Willi Syndrome in the initial stages of life but becomes increasingly distinct throughout childhood and adolescence. Here, we describe the phenotype of an international cohort of 78 patients with nonsense or frameshift mutations in MAGEL2. This cohort includes 43 individuals that have been reported previously, as well as 35 newly identified individuals with confirmed pathogenic genetic variants. We emphasize that intellectual disability/developmental delay, autism spectrum disorder, neonatal hypotonia, infantile feeding problems, and distal joint contractures are the most consistently shared features of patients with SYS. Our results also indicate that there is a marked prevalence of infantile respiratory distress, gastroesophageal reflux, chronic constipation, skeletal abnormalities, sleep apnea, and temperature instability. While there are many shared features, patients with SYS are characterized by a wide phenotypic spectrum, including a variable degree of intellectual disability, language development, and motor milestones. Our results indicate that the variation in phenotypic severity may depend on the specific location of the truncating mutation, suggestive of a genotype–phenotype association. This evidence may be useful in both prenatal and pediatric genetic counseling.
The proteasome processes proteins to facilitate immune recognition and host defense. When inherently defective, it can lead to aberrant immunity resulting in a dysregulated response that can cause autoimmunity and/or autoinflammation. Biallelic or digenic loss-of-function variants in some of the proteasome subunits have been described as causing a primary immunodeficiency disease that manifests as a severe dysregulatory syndrome: chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE). Proteasome maturation protein (POMP) is a chaperone for proteasome assembly and is critical for the incorporation of catalytic subunits into the proteasome. Here, we characterize and describe POMP-related autoinflammation and immune dysregulation disease (PRAID) discovered in two unrelated individuals with a unique constellation of early-onset combined immunodeficiency, inflammatory neutrophilic dermatosis, and autoimmunity. We also begin to delineate a complex genetic mechanism whereby de novo heterozygous frameshift variants in the penultimate exon of POMP escape nonsense-mediated mRNA decay (NMD) and result in a truncated protein that perturbs proteasome assembly by a dominant-negative mechanism. To our knowledge, this mechanism has not been reported in any primary immunodeficiencies, autoinflammatory syndromes, or autoimmune diseases. Here, we define a unique hypo- and hyper-immune phenotype and report an immune dysregulation syndrome caused by frameshift mutations that escape NMD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.