Angelman syndrome (AS) is a single gene disorder characterized by intellectual disability, developmental delay, behavioral uniqueness, speech impairment, seizures, and ataxia1,2. It is caused by maternal deficiency of the imprinted gene UBE3A, encoding an E3 ubiquitin ligase3-5. All patients carry at least one copy of paternal UBE3A, which is intact but silenced by a nuclear-localized long non-coding RNA, UBE3A antisense transcript (UBE3A-ATS)6-8. Murine Ube3a-ATS reduction by either transcription termination or topoisomerase I inhibition increased paternal Ube3a expression9,10. Despite a clear understanding of the disease-causing event in AS and the potential to harness the intact paternal allele to correct disease, no gene-specific treatment exists for patients. Here we developed a potential therapeutic intervention for AS by reducing Ube3a-ATS with antisense oligonucleotides (ASOs). ASO treatment achieved specific reduction of Ube3a-ATS and sustained unsilencing of paternal Ube3a in neurons in vitro and in vivo. Partial restoration of UBE3A protein in an AS mouse model ameliorated some cognitive deficits associated with the disease. Although additional studies of phenotypic correction are needed, for the first time we developed a sequence-specific and clinically feasible method to activate expression of the paternal Ube3a allele.
The rapid accrual of knowledge in genomic medicine has prompted the reanalysis of preexisting data. 1,2 We clinically reanalyzed data from two patient series that had undergone diagnostic proband-only exome sequencing.
Importance: While congenital malformations and genetic diseases are a leading cause of early infant death, the contribution of single-gene disorders in this group is undetermined. Objective: To determine the diagnostic yield and utility of clinical exome sequencing in critically ill infants. Design, setting, participants: Clinical exome sequencing was performed on 278 unrelated infants within the first 100 days of life, admitted to Texas Children’s Hospital in Houston, over a period of five years, between December 2011 and January 2017. Exome sequencing types included proband exome, trio exome, and critical trio exome, a rapid genomic assay for seriously-ill infants. Main outcomes and measures: Indications for testing, diagnostic yield of clinical exome sequencing, turnaround time, molecular findings, patient age at diagnosis, and impact on medical management in a group of critically ill infants suspected to have genetic disorders. Results: Clinical indications for exome sequencing included a wide range of medical concerns. Overall, molecular diagnosis was achieved in 102/278 infants by clinical exome sequencing with a diagnostic yield of 36.7%. The diagnosis affected medical management in 53/102 (52.0%) of infants, with substantial impact on informed redirection of care, initiation of new subspecialist care, medication/dietary modifications, and furthering life-saving procedures in select patients. Critical trio exome revealed a molecular diagnosis in 32/63 infants (50.8%) at 33.1±5.6 days of life with turnaround time (TAT) of 13.0 ± 0.4 days. Clinical care was altered by the diagnosis in 23/32 (71.9%) patients. The diagnostic yield, patient age at diagnosis, and medical impact in the group that underwent critical trio exome is significantly different comparing to regular exome testing. For deceased infants (n=81), genetic disorders were molecular diagnosed in 39 (48.1%) by exome sequencing with implications for recurrence risk counseling. Conclusions and relevance: Exome sequencing is a powerful tool for the diagnostic evaluation of critically ill infants with suspected monogenic disorders in the neonatal and pediatric ICUs, leading to notable impact on clinical decision-making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.