The earliest insect for which there is significant structural data, a bristletail (Archaeognatha) from the Early Devonian (Emsian Stage) of the Gaspé Peninsula of Québec, Canada, is described. Detailed analysis of the head indicates that this insect had large, bulging, separated, compound eyes, monocondylic mandibles, and numerous sensory setae. This fossil, the oldest record of terrestrial animal life from North America, suggests that early hexapod diversification occurred contemporaneously with the emergence of the first vascular land plants during the Silurian.
Since the late Paleozoic, insects and arachnids have diversified in the terrestrial world so spectacularly that they have become unquestionably the most diverse group of organisms to ever inhabit the planet. In fact, this 300 million year interval may appropriately be referred to as the age of arthropods. What is the origin and history of terrestrial arthropods? How is arthropod diversity maintained on land? In this rhetorical context we will discuss (1) the degree to which terrestriality is found in arthropods, (2) the physiological barriers to terrestrialization that arthropod clades confronted, (3) the historical record of arthropod diversity on land based on paleobiological, comparative physiological and zoogeographical evidence, and (4) some tentative answers to the “why” of terrestrial arthropod success. We are providing a geochronologic scope to terrestriality that includes not only the early history of terrestrial arthropods, but also the subsequent expansion of arthropods into major terrestrial habitats.
Most paleontological textbooks deal with tracheates and chelicerates in only a cursory way because of their putatively poor fossil record. However, recent investigations into the paleobiology of these groups reveal that the fossil record is not only more extensive than previously assumed, but provides a wealth of information regarding both broad and detailed patterns of evolution of the two most diverse subphyla on the planet. Tracheata, including insects, entognaths and the various myriapod groups, are the most diverse subphylum. Insects alone are the most diverse class of animals known, outnumbering the combined species level diversity of all other animals. The Chelicerata, composed of the eurypterids, xiphosurids, arachnids and pycnogonids, are the second most diverse subphylum, with the diversity of arachnids exceeding all classes except for the insects. Consequently, not only does the evolution of tracheates and chelicerates provide an interesting story in itself, but these groups also provide us with insight into more general aspects of the evolutionary process that are of interest to the general evolutionary biologist as well as to the arthropod specialist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.