Magnetic resonance fingerprinting (MRF) is a technique for quantitative estimation of spin- relaxation parameters from magnetic-resonance data. Most current MRF approaches assume that only one tissue is present in each voxel, which neglects intravoxel structure, and may lead to artifacts in the recovered parameter maps at boundaries between tissues. In this work, we propose a multicompartment MRF model that accounts for the presence of multiple tissues per voxel. The model is fit to the data by iteratively solving a sparse linear inverse problem at each voxel, in order to express the measured magnetization signal as a linear combination of a few elements in a precomputed fingerprint dictionary. Thresholding-based methods commonly used for sparse recovery and compressed sensing do not perform well in this setting due to the high local coherence of the dictionary. Instead, we solve this challenging sparse-recovery problem by applying reweighted-đ1-norm regularization, implemented using an efficient interior-point method. The proposed approach is validated with simulated data at different noise levels and undersampling factors, as well as with a controlled phantom-imaging experiment on a clinical magnetic-resonance system.
In this work we analyze a convex-programming method for estimating superpositions of point sources or spikes from nonuniform samples of their convolution with a known kernel. We consider a one-dimensional model where the kernel is either a Gaussian function or a Ricker wavelet, inspired by applications in geophysics and imaging. Our analysis establishes that minimizing a continuous counterpart of the`1-norm achieves exact recovery of the original spikes as long as (1) the signal support satisfies a minimum-separation condition and (2) there are at least two samples close to every spike. In addition, we derive theoretical guarantees on the robustness of the approach to both dense and sparse additive noise.
We propose a learning-based approach for estimating the spectrum of a multisinusoidal signal from a finite number of samples. A neural-network is trained to approximate the spectra of such signals on simulated data. The proposed methodology is very flexible: adapting to different signal and noise models only requires modifying the training data accordingly. Numerical experiments show that the approach performs competitively with classical methods designed for additive Gaussian noise at a range of noise levels, and is also effective in the presence of impulsive noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citationsâcitations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.