Reinforcement learning and planning have been revolutionized in recent years, due in part to the mass adoption of deep convolutional neural networks and the resurgence of powerful methods to refine decision-making policies. However, the problem of sparse reward signals and their representation remains pervasive in many domains. While various rewardshaping mechanisms and imitation learning approaches have been proposed to mitigate this problem, the use of humanaided artificial rewards introduces human error, sub-optimal behavior, and a greater propensity for reward hacking. In this paper, we mitigate this by representing objectives as automata in order to define novel reward shaping functions over this structured representation. In doing so, we address the sparse rewards problem within a novel implementation of Monte Carlo Tree Search (MCTS) by proposing a reward shaping function which is updated dynamically to capture statistics on the utility of each automaton transition as it pertains to satisfying the goal of the agent. We further demonstrate that such automaton-guided reward shaping can be utilized to facilitate transfer learning between different environments when the objective is the same.
Sparse rewards and their representation in multi-agent domains remains a challenge for the development of multi-agent planning systems. While techniques from formal methods can be adopted to represent the underlying planning objectives, their use in facilitating and accelerating learning has witnessed limited attention in multi-agent settings. Reward shaping methods that leverage such formal representations in single-agent settings are typically static in the sense that the artificial rewards remain the same throughout the entire learning process. In contrast, we investigate the use of such formal objective representations to define novel reward shaping functions that capture the learned experience of the agents. More specifically, we leverage the automaton representation of the underlying team objectives in mixed cooperative-competitive domains such that each automaton transition is assigned an expected value proportional to the frequency with which it was observed in successful trajectories of past behavior. This form of dynamic reward shaping is proposed within a multi-agent tree search architecture wherein agents can simultaneously reason about the future behavior of other agents as well as their own future behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.