[1] The technique of radio occultation (RO) is demonstrated to be a powerful tool for studying equatorial F-region irregularities (EFIs) associated with equatorial plasma bubbles. The extensive 4.9 year RO dataset of the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) satellites was employed in this study and contains EFI observations under a wide variety of solar and geomagnetic conditions. From an analysis of the EFI occurrence dependence on season/longitude, it is found that the EFI occurrence statistics largely match those reported previously, with the exception of an equinoctial EFI occurrence maximum in the American sector that is absent from previous studies. It is revealed that this maximum is due to enhanced EFI occurrence near the South Atlantic anomaly, where EFIs are expected to be suppressed by particle precipitation. An investigation into the solar activity dependence of the EFI occurrence characteristics revealed significant increases in the range of local times and latitudes with solar activity for most longitude sectors and seasons. Finally, the EFI suppression and enhancement effects of storm-time electric fields are also investigated using the COSMIC data.
Geomagnetically induced currents (GICs) caused by interplanetary shocks represent a serious space weather threat to modern technological infrastructure. The arrival of interplanetary shocks drives magnetosphere and ionosphere current systems, which then induce electric currents at ground level. The impact of these currents at high latitudes has been extensively researched, but the magnetic equator has been largely overlooked. In this paper, we investigate the potential effects of interplanetary shocks on the equatorial region and demonstrate that their magnetic signature is amplified by the equatorial electrojet. This local amplification substantially increases the region's susceptibility to GICs. Importantly, this result applies to both geomagnetic storms and quiet periods and thus represents a paradigm shift in our understanding of adverse space weather impacts on technological infrastructure.
An analysis of the occurrence of equatorial plasma bubbles (EPBs) around the world during the 2015 St. Patrick's Day geomagnetic storm is presented. A network of 12 Global Positioning System receivers spanning from South America to Southeast Asia was used, in addition to colocated VHF receivers at three stations and four nearby ionosondes. The suppression of postsunset EPBs was observed across most longitudes over 2 days. The EPB observations were compared to calculations of the linear Rayleigh‐Taylor growth rate using coupled thermosphere‐ionosphere modeling, which successfully modeled the transition of favorable EPB growth from postsunset to postmidnight hours during the storm. The mechanisms behind the growth of postmidnight EPBs during this storm were investigated. While the latter stages of postmidnight EPB growth were found to be dominated by disturbance dynamo effects, the initial stages of postmidnight EPB growth close to local midnight were found to be controlled by the higher altitudes of the plasma (i.e., the gravity term). Modeling and observations revealed that during the storm the ionospheric plasma was redistributed to higher altitudes in the low‐latitude region, which made the plasma more susceptible to Rayleigh‐Taylor growth prior to the dominance of the disturbance dynamo in the eventual generation of postmidnight EPBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.