Non-syndromic cleft lip with or without cleft palate (NSCLP) is a common birth defect. Genetic and environmental factors have been causally implicated and studies have begun to delineate genetic contributions. The Wnt genes are involved in regulating mid-face development and upper lip fusion and are therefore strong candidates for an etiological role in NSCLP. Furthermore, the clf1 region in A/WyN clefting susceptible mice contains the Wnt3 and Wnt9B genes. To assess the role of the Wnt family of genes in NSCLP, we interrogated seven Wnt genes (Wnt3, Wnt3A, Wnt5A, Wnt7A, Wnt8A, Wnt9B and Wnt11) in our well-defined NSCLP dataset. Thirty-eight single nucleotide polymorphisms were genotyped in 132 multiplex NSCLP families and 354 simplex parent-child trios. In the entire dataset, single-nucleotide polymorphisms (SNPs) in three genes, Wnt3A (P = 0.006), Wnt 5A (P = 0.002) and Wnt11 (P = 0.0001) were significantly associated with NSCLP after correction for multiple testing. When stratified by ethnicity, the strongest associations were found for SNPs in Wnt3A (P = 0.0007), Wnt11 (P = 0.0012) and Wnt8A (P = 0.0013). Multiple haplotypes in Wnt genes were associated with NSCLP, and gene-gene interactions were observed between Wnt3A and both Wnt3 and Wnt5A (P = 0.004 and P = 0.039, respectively). This data suggests that alteration in Wnt gene function may perturb formation and/or fusion of the facial processes and predispose to NSCLP.
Non-syndromic cleft lip with or without cleft palate (NSCLP) results from the complex interaction between genes and environmental factors. Candidate gene analysis and genome scans have been employed to identify the genes contributing to NSCLP. In this study, we evaluated the 16q24.1 chromosomal region, which has been identified by multiple genome scans as an NSCLP region of interest. Two candidate genes were found in the region: interferon regulatory factor 8 (IRF8) and cysteine-rich secretory protein LCCL domain containing 2 (CRISPLD2). Initially, Caucasian and Hispanic NSCLP multiplex families and simplex parent-child trios were genotyped for single nucleotide polymorphisms (SNPs) in both IRF8 and CRISPLD2. CRISPLD2 was subsequently genotyped in a data set comprised of NSCLP families from Colombia, South America. Linkage disequilibrium analysis identified a significant association between CRISPLD2 and NSCLP in both our Caucasian and Hispanic NSCLP cohorts. SNP rs1546124 and haplotypes between rs1546124 and either rs4783099 or rs16974880 were significant in the Caucasian multiplex population (P=0.01, P=0.002 and P=0.001, respectively). An altered transmission of CRISPLD2 SNPs rs8061351 (P=0.02) and rs2326398 (P=0.06) was detected in the Hispanic population. No association was found between CRISPLD2 and our Colombian population or IRF8 and NSCLP. In situ hybridization showed that CRISPLD2 is expressed in the mandible, palate and nasopharynx regions during craniofacial development at E13.5-E17.5, respectively. Altogether, these data suggest that genetic variation in CRISPLD2 has a role in the etiology of NSCLP.
Nonsyndromic cleft lip and palate (NSCLP), a common birth defect, affects 4000 newborns in the US each year. Previously, we described an association between CRISPLD2 and NSCLP and showed Crispld2 expression in the murine palate. These results suggested that a perturbation in CRISPLD2 activity affects craniofacial development. Here, we describe crispld2 expression and the phenotypic consequence of its loss of function in zebrafish. crispld2 was expressed at all stages of zebrafish morphogenesis examined and localized to the rostral end by 1-day post fertilization. Morpholino knockdown of crispld2 resulted in significant jaw and palatal abnormalities in a dose dependent manner. Loss of crispld2 caused aberrant patterning of neural crest cells (NCC) suggesting that crispld2 is necessary for normal NCC formation. Altogether, we show that crispld2 plays a significant role in the development of the zebrafish craniofacies and alteration of normal protein levels disturbs palate and jaw formation. These data provide support for a role of CRISPLD2 in NSCLP.
Nonsyndromic cleft lip with or without cleft palate (NSCLP) is a common birth anomaly that requires prolonged multidisciplinary rehabilitation. Although variation in several genes has been identified as contributing to NSCLP, most of the genetic susceptibility loci have yet to be defined. To identify additional contributory genes, a high-throughput genomic scan was performed using the Illumina Linkage IVb Panel platform. We genotyped 6008 SNPs in nine non-Hispanic white NSCLP multiplex families and a single large African-American NSCLP multiplex family. Fourteen chromosomal regions were identified with LOD41.5, including six regions not previously reported. Analysis of the data from the African-American and nonHispanic white families revealed two likely chromosomal regions: 8q21.3 -24.12 and 22q12.2 -12.3 with LOD scores of 2.98 and 2.66, respectively. On the basis of biological function, syndecan 2 (SDC2) and growth differentiation factor 6 (GDF6) in 8q21.3 -24.12 and myosin heavy-chain 9, non-muscle (MYH9) in 22q12.2 -12.3 were selected as candidate genes. Association analyses from these genes yielded marginally significant P-values for SNPs in SDC2 and GDF6 (0.01rPo0.05). Evidence for an altered transmission was found for four MYH9 SNPs (Po0.01). SNP rs1002246 exhibited altered transmission by all analytic methods. However, analysis of two SNP MYH9 haplotypes did not identify a single high-risk haplotype. Our results confirm a previous report that 8q21.3 -24.12 may harbor a clefting gene and identify 22q12.2 -12.3 as a new candidate region that contains MYH9. Most importantly, we confirm the previous report of an association with MYH9.
Non-syndromic cleft lip with or without cleft palate (NSCLP) results from the complex interaction between genes and environmental factors. Candidate gene analysis and genome scans have been employed to identify the genes contributing to NSCLP. In this study, we evaluated the 16q24.1 chromosomal region, which has been identified by multiple genome scans as an NSCLP region of interest. Two candidate genes were found in the region: interferon regulatory factor 8 (IRF8) and cysteine-rich secretory protein LCCL domain containing 2 (CRISPLD2). Initially, Caucasian and Hispanic NSCLP multiplex families and simplex parent-child trios were genotyped for single nucleotide polymorphisms (SNPs) in both IRF8 and CRISPLD2. CRISPLD2 was subsequently genotyped in a data set comprised of NSCLP families from Colombia, South America. Linkage disequilibrium analysis identified a significant association between CRISPLD2 and NSCLP in both our Caucasian and Hispanic NSCLP cohorts. SNP rs1546124 and haplotypes between rs1546124 and either rs4783099 or rs16974880 were significant in the Caucasian multiplex population (P = 0.01, P = 0.002 and P = 0.001, respectively). An altered transmission of CRISPLD2 SNPs rs8061351 (P = 0.02) and rs2326398 (P = 0.06) was detected in the Hispanic population. No association was found between CRISPLD2 and our Colombian population or IRF8 and NSCLP. In situ hybridization showed that CRISPLD2 is expressed in the mandible, palate and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.