Background: Progressive collapsing foot deformity (PCFD) is a complex pathology associated with tendon insufficiency, ligamentous failure, joint malalignment, and aberrant plantar force distribution. Existing knowledge of PCFD consists of static measurements, which provide information about structure but little about foot and ankle kinematics during gait. A model of PCFD was simulated in cadavers (sPCFD) to quantify the difference in joint kinematics and plantar pressure between the intact and sPCFD conditions during simulated stance phase of gait. Methods: In 12 cadaveric foot and ankle specimens, the sPCFD condition was created via sectioning of the spring ligament and the medial talonavicular joint capsule followed by cyclic axial compression. Specimens were then analyzed in intact and sPCFD conditions via a robotic gait simulator, using actuators to control the extrinsic tendons and a rotating force plate underneath the specimen to mimic the stance phase of walking. Force plate position and muscle forces were optimized using a fuzzy logic iterative process to converge and simulate in vivo ground reaction forces. An 8-camera motion capture system recorded the positions of markers fixed to bones, which were then used to calculate joint kinematics, and a plantar pressure mat collected pressure distribution data. Joint kinematics and plantar pressures were compared between intact and sPCFD conditions. Results: The sPCFD condition increased subtalar eversion in early, mid-, and late stance ( P < .05), increased talonavicular abduction in mid- and late stance ( P < .05), and increased ankle plantarflexion ( P < .05), adduction ( P < .05), and inversion ( P < .05). The center of plantar pressure was significantly ( P < .01) medialized in this model of sPCFD and simulated stance phase of gait. Discussion: Subtalar and talonavicular joint kinematics and plantar pressure distribution significantly changed with the sPCFD and in the directions expected from a PCFD foot. We also found that ankle joint kinematics changed with medial and plantar drift of the talar head, indicating abnormal talar rotation. Although comparison to an in vivo PCFD foot was not performed, this sPCFD model produced changes in foot kinematics and indicates that concomitant abnormal changes may occur at the ankle joint with PCFD. Clinical Relevance: This study describes the dynamic kinematic and plantar pressure changes in a cadaveric model of simulated progressive collapsing foot deformity during simulated stance phase.
Finite element (FE) models to evaluate the burden placed on the interaction between total ankle arthroplasty (TAA) implants and the bone often rely on peak axial forces. However, the loading environment of the ankle is complex, and it is unclear whether peak axial forces represent a challenging scenario for the interaction between the implant and the bone. Our goal was to determine how the loads and the design of the fixation of the tibial component of TAA impact the interaction between the implant and the bone. To this end, we developed a framework that integrated robotic cadaveric simulations to determine the ankle kinematics, musculoskeletal models to determine the ankle joint loads, and FE models to evaluate the interaction between TAA and the bone. We compared the bone-implant micromotion and the risk of bone failure of three common fixation designs for the tibial component of TAA: spikes, a stem, and a keel. We found that the most critical conditions for the interaction between the implant and the bone were dependent on the specimen and the fixation design, but always involved submaximal forces and large moments. We also found that while the fixation design influenced the distribution and the peak value of bone-implant micromotion, the amount of bone at risk of failure was specimen dependent. To account for the most critical conditions for the interaction between the implant and the bone, our results support simulating multiple specimens under complex loading profiles that include multiaxial moments and span entire activity cycles.
Overlap of the insertion areas on the tibial plateau has been previously reported; however, the results of this study demonstrate significant overlap of the insertions superior to the insertion sites on the tibial plateau as well. These findings need to be considered when positioning for tibial tunnel creation in ACL reconstruction to avoid damage to the ALMR insertion.
Background:Meniscal root tears cause menisci and their insertions to inadequately distribute loads and potentially leave underlying articular cartilage unprotected. Untreated meniscal root tears are becoming increasingly recognized to induce joint degradation; however, little information is known about anterior meniscal root tears and how they affect joint tissue.Purpose:To observe the early degenerative changes within the synovial fluid, menisci, tibial articular cartilage, and subchondral bone after arthroscopic creation of untreated anterior meniscal root tears.Study Design:Controlled laboratory study.Methods:Anterolateral meniscal root tears were created in 1 knee joint of 5 adult Flemish Giant rabbits, and anteromedial meniscal root tears were created in 4 additional rabbits. The contralateral limbs were used as nonoperated controls. The animals were euthanized at 8 weeks postoperatively; synovial fluid was aspirated, and tissue samples of menisci and tibial articular cartilage were collected and processed for multiple analyses to detect signs of early degeneration.Results:Significant changes were found within the synovial fluid, meniscal tissue, and tibial subchondral bone of the knees with anterior meniscal root tears when compared with controls. There were no significant changes identified in the tibial articular cartilage when comparing the tear groups with controls.Conclusion:This study demonstrated early degenerative changes within the synovial fluid, menisci, and tibial subchondral bone when leaving anterior meniscal root tears untreated for 8 weeks. The results suggest that meniscal tissue presents measurable, degenerative changes prior to changes within the articular cartilage after anterior meniscal root tears. Anterior destabilization of the meniscus arthroscopically may lead to measurable degenerative changes and be useful for future in vivo natural history and animal repair studies.Clinical Relevance:The present study is the first to investigate various tissue changes after anterior meniscal root tears of both the medial and lateral menisci. The results from this study suggest that degenerative changes occur within the synovial fluid, meniscus, and tibial subchondral bone prior to any measurable changes to the tibial articular cartilage. Further studies should expand on this study to evaluate how these components continue to progress when left untreated for long periods.
The centre of the ACL femoral attachment consisted of a direct fibre structure, while the posterior portion had an indirect fibre structure. These results support previous animal studies reporting that the centre of the ACL femoral insertion was comprised of the strongest reported fibre type. Clinically, the femoral ACL reconstruction tunnel should be oriented to cover the entirety of the central direct ACL fibres and may need to be customized based on graft type and the fixation device used during surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.