Parkinson's disease (PD) is a common neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra that leads to severe motor and non-motor deficits.Although the underlying mechanisms of dopaminergic neuron loss is not entirely clear, increasing evidence suggests mitochondrial malfunction as a key contributor to disease pathogenesis. Recently, we found that human PD patient stem cell-derived dopaminergic neurons exhibit reduced nicotinamide adenine dinucleotide (NAD+) levels, an essential cofactor in mitochondrial function and cellular metabolism. In addition, we found that sirtuins, a group of NAD+-dependent deacetylase enzymes that participate in the regulation of mitochondrial function, energy production, and cell survival, displayed decreased activity in PD dopaminergic neurons, thereby suggesting a potential mechanism for dopaminergic loss in PD. Thus, here we tested whether treatment of PD stem cell-derived dopaminergic neurons with an NAD+ precursor could increase NAD+ levels and improve sirtuin activity. Introduction:Parkinson's disease (PD) is a devastating, progressive neurological disorder characterized by the loss of dopaminergic neurons in the substantia nigra and other brain stem nuclei, resulting in decreased dopamine release in the striatum and dysregulated motor output. As the disease advances, PD patients develop tremors, display decreased fine motor control and suffer from non-motor symptoms such as autonomic dysfunction and dementia. As a result, patients are often severely disabled within 10 years of receiving a diagnosis. With an estimated prevalence of 1% in those over 60 years old [1], PD is the second most common neurodegenerative disease worldwide and the incidence and societal impact is likely to increase with the expanding population [2].Although it is known that death of dopaminergic neurons is the underlying cause of motor symptoms in PD, the exact biochemical processes driving this cell death remain elusive. Mounting
Objectives: Parkinson’s disease (PD) is a common neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra. Although the underlying mechanisms of dopaminergic neuron loss is not fully understood, evidence suggests mitochondrial malfunction as a key contributor to disease pathogenesis. We previously found that human PD patient stem cell-derived dopaminergic neurons exhibit reduced nicotinamide adenine dinucleotide (NAD+) levels and reduce activity of sirtuins, a group of NAD+-dependent deacetylase enzymes that participate in the regulation of mitochondrial function, energy production, and cell survival. Thus, here we tested whether treatment of PD stem cell-derived dopaminergic neurons with nicotinamide mononucleotide (NMN), an NAD+ precursor, could increase NAD+ levels and improve sirtuin activity. Results: We treated PD iPSC-derived dopaminergic neurons with NMN and found that NAD+ levels did increase. The deacetylase activity of sirtuin (SIRT) 2 was improved with NMN treatment, but NMN had no impact on deacetylase activity of SIRT 1 or 3. These results suggest that NMN can restore NAD+ levels and SIRT 2 activity, but that additional mechanisms are involved SIRT 1 and 3 dysregulation in PD dopaminergic neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.