A new epoxy-based ink is reported, which enables 3D printing of lightweight cellular composites with controlled alignment of multiscale, high-aspectratio fiber reinforcement to create hierarchical structures inspired by balsa wood. Young's modulus values up to 10 times higher than existing commercially available 3D-printed polymers are attainable, while comparable strength values are maintained.
Purpose
This paper aims to investigate the deposited structure and mechanical performance of printed materials obtained during initial development of the Big Area Additive Manufacturing (BAAM) system at Oak Ridge National Laboratory. Issues unique to large-scale polymer deposition are identified and presented to reduce the learning curve for the development of similar systems.
Design/methodology/approach
Although the BAAM’s individual extruded bead is 10-20× larger (∼9 mm) than the typical small-scale systems, the overall characteristics of the deposited material are very similar. This study relates the structure of BAAM materials to the material composition, deposition parameters and resulting mechanical performance.
Findings
Materials investigated during initial trials are suitable for stiffness-limited applications. The strength of printed materials can be significantly reduced by voids and imperfect fusion between layers. Deposited material was found to have voids between adjacent beads and micro-porosity within a given bead. Failure generally occurs at interfaces between adjacent beads and successive layers, indicating imperfect contact area and polymer fusion.
Practical implications
The incorporation of second-phase reinforcement in printed materials can significantly improve stiffness but can result in notable anisotropy that needs to be accounted for in the design of BAAM-printed structures.
Originality/value
This initial evaluation of BAAM-deposited structures and mechanical performance will guide the current research effort for improving interlaminar strength and process control.
SignificanceNatural composites exhibit hierarchical and spatially varying structural features that give rise to high stiffness and strength as well as damage tolerance. Here, we report a rotational 3D printing method that enables exquisite control of fiber orientation within engineered composites. Our approach broadens their design, microstructural complexity, and performance space by enabling site-specific optimization of fiber arrangements within short carbon fiber–epoxy composites. Using this approach, we have created composites with programmable strain distribution and failure as well as enhanced damage tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.