Random lasers are a developing class of light sources that utilize a highly disordered gain medium as opposed to a conventional optical cavity. Although traditional random lasers often have a relatively broad emission spectrum, a random laser that utilizes vibration transitions via Raman scattering allows for an extremely narrow bandwidth, on the order of 10 cm−1. Here we demonstrate the first experimental evidence of lasing via a Raman interaction in a bulk three-dimensional random medium, with conversion efficiencies on the order of a few percent. Furthermore, Monte Carlo simulations are used to study the complex spatial and temporal dynamics of nonlinear processes in turbid media. In addition to providing a large signal, characteristic of the Raman medium, the random Raman laser offers us an entirely new tool for studying the dynamics of gain in a turbid medium.
Significance
The long-range stand-off chemical identification of materials has been a high profile goal of science in recent years. In this article, we demonstrate the stand-off identification of chemical compounds from kilometer-scale distances in a single laser pulse by detecting the emission from random Raman lasing processes in the target. This technique opens up the door to rapid identification of potentially hazardous chemicals from a safe distance.
Monte Carlo techniques are the gold standard for studying light propagation in turbid media. Traditional Monte Carlo techniques are unable to include wave effects, such as diffraction; thus, these methods are unsuitable for exploring focusing geometries where a significant ballistic component remains at the focal plane. Here, a method is presented for accurately simulating photon propagation at the focal plane, in the context of a traditional Monte Carlo simulation. This is accomplished by propagating ballistic photons along trajectories predicted by Gaussian optics until they undergo an initial scattering event, after which, they are propagated through the medium by a traditional Monte Carlo technique. Solving a known problem by building upon an existing Monte Carlo implementation allows this method to be easily implemented in a wide variety of existing Monte Carlo simulations, greatly improving the accuracy of those models for studying dynamics in a focusing geometry.
Abstract:The enhanced generation of a spontaneous Raman signal by way of elastic scattering is demonstrated. Using Monte Carlo simulations, we show that elastic scattering, by increasing the path length of light through the medium, enhances the generation of a Raman signal. This is investigated over a large parameter space, demonstrating that this effect is robust, and providing additional physical insight into the dynamics of light propagation in a turbid medium. Both the temporal and spatial profiles of the Raman signal are shown to depend heavily on the amount of scattering present.
We present a detailed theoretical study of a recent experiment [A. J. Traverso et al., Proc. Natl. Acad. Sci. USA 109, 15185 (2012)] in which a laserlike source is created in air by pumping with a nanosecond pulse. The source generates radiation in the forward and backward directions. The temporal behavior of the emitted pulses is investigated for different pump shapes and durations. Our analysis indicates that the spiky emission is due to quantum coherence via cooperation between atoms of an ensemble, which leads to strong-oscillatory superfluorescence. We show that these cooperative nonadiabatic coherence effects cannot be described by rate equations and instead a full set of the Maxwell-Bloch equations must be used. We consider a range of parameters and study transitions between various regimes. Understanding these coherence-brightened processes in air should lead to improvements in environmental, atmospheric remote sensing and other applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.