We describe herein the construction of a simple, low-power, broadly responsive vapor sensor. Carbon black-organic polymer composites have been shown to swell reversibly upon exposure to vapors. Thin films of carbon black-organic polymer composites were deposited across two metallic leads, and swelling-induced resistance changes of the films signaled the presence of vapors. To identify and classify vapors, arrays of such vapor-sensing elements were constructed, with each element containing the same carbon black conducting phase but a different organic polymer as the insulating phase. The differing gas-solid partition coefficients for the various polymers of the sensor array produced a pattern of resistance changes that can be used to classify vapors and vapor mixtures. This type of sensor array resolved common organic solvents, including molecules of different classes (such as aromatics from alcohols) as well as those within a particular class (such as benzene from toluene and methanol from ethanol). The response of an individual composite to varying concentrations of solvent was consistent with the predictions of percolation theory. Accordingly, significant increases in the signals from array elements were observed for carbon black-polymer composites that were operated near their percolation thresholds.
The responses relative to an air background of carbon black/polymer composite vapor detectors have been determined as a function of the concentration of a homologous series of alcohols (n-CnH2n+1OH, 1 < or = n < or = 8), a homologous series of alkanes (n-CnH2n+2, 5 < or = n < or = 10 and n = 12, 14), and a set of diverse solvent vapors. In all cases, the steady-state relative differential resistance responses, delta R/Rb, of the carbon black/polymer composite vapor detectors were well-described by a linear relationship with respect to the analyte partial pressure, at least over the tested concentration range (P/P degree = 0.005-0.03, where P degree is the vapor pressure of the analyte). When two vapors in air were simultaneously presented to the detectors, the delta R/Rb response, relative to an air background, was the sum of the delta R/Rb values obtained when each analyte was exposed separately to the carbon black/polymer composite detectors under study. Similarly, when an analyte was exposed to the detectors on top of a background level of another analyte, the delta R/Rb values of the array of detectors were very close to those obtained when the test analyte was exposed to the detectors only in the presence of background air. The initial training requirements from the array response output data of such detectors are minimized because the delta R/Rb response pattern produced by the analyte of concern can be associated uniquely with that odor, under the conditions explored in this work.
A statistical metric, based on the magnitude and standard deviations along linear projections of clustered array response data, was utilized to facilitate an evaluation of the performance of detector arrays in various vapor classification tasks. This approach allowed quantification of the ability of a 14-element array of carbon black-insulating polymer composite chemiresistors to distinguish between members of a set of 19 solvent vapors, some of which vary widely in chemical properties (e.g., methanol and benzene) and others of which are very similar (e.g., n-pentane and n-heptane). The data also facilitated evaluation of questions such as the optimal number of detectors required for a specific task, whether improved performance is obtained by increasing the number of detectors in a detector array, and how to assess statistically the diversity of a collection of detectors in order to understand more fully which properties are underrepresented in a particular set of array elements. In addition, the resolving power of arrays of carbon black-polymer composites was compared to the resolving power of specific collections of bulk conducting organic polymer or tin oxide detector arrays in a common set of vapor classification tasks.
Response data were collected for a carbon black-polymer composite electronic nose array during exposure to homologous series of alkanes and alcohols. The mean response intensity of the electronic nose detectors and the response intensity of the most strongly driven set of electronic nose detectors were essentially constant for members of a chemically homologous odorant series when the concentration of each odorant in the gas phase was maintained at a constant fraction of the odorant's vapor pressure. A similar trend is observed in human odor detection threshold values for these same homologous series of odorants. Because the thermodynamic activity of an odorant at equilibrium in a sorbent phase is equal to the partial pressure of the odorant in the gas phase divided by the vapor pressure of the odorant and because the activity coefficients are similar within these homologous series of odorants for sorption of the vapors into specific polymer films, the data imply that the trends in detector response can be understood based on the thermodynamic tendency to establish a relatively constant concentration of sorbed odorant into each of the polymeric films of the electronic nose at a constant fraction of the odorant's vapor pressure. Similarly, the data are consistent with the hypothesis that the odor detection thresholds observed in human psychophysical experiments for the odorants studied herein are driven predominantly by the similarity in odorant concentrations sorbed into the olfactory epithelium at a constant fraction of the odorant's vapor pressure.
Compatible blends of poly(vinyl acetate) and poly(methyl methacrylate) have been used to produce a series of electrically conducting carbon black composites whose resistance is sensitive to the nature and concentration of an analyte in the vapor phase. The dc electrical resistance response of the composites was found to be a nonlinear function of the mole fraction of poly(vinyl acetate) in the blend. These compatible blend composite detectors provided additional analyte discrimination information relative to a reference detector array that only contained composites formed using the pure polymer phases. The added discrimination power provided by the compatible blend detectors, and thus the added diversity of the enhanced detector array, was quantified through use of a statistical metric to assess the performance of detector arrays in various vapor classification tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.