Recent studies have reported beneficial carryover effects of juvenile development that predict interspecific survival differences at independence. Yet, traits relating to body size (i.e. morphological traits) have proven to be unreliable predictors of juvenile survival within species. Exploring individual variation of growth trajectories and how they covary with physiology could reveal species-specific developmental modes which have implications for our assessments of juvenile quality. Here, we investigated morphological development of European starlings (
Sturnus vulgaris
) approaching fledging in relation to three components of physiological condition at independence: aerobic capacity, energy state and oxidative status. We found evidence of flexible mass and wing growth which independently covaried with fledgling energy state and aerobic capacity, respectively. By comparison, tarsus and wing length at fledging were unrelated to any physiological trait, while mass was positively associated with principal component scores that comprised aerobic capacity and energy state. Thus, flexible growth trajectories were consistent with ‘developmental plasticity’: adaptive pre-fledging mass recession and compensatory wing growth, which seemingly came at a physiological cost, while fledgling body mass positively reflected overall physiological condition. This highlights how patterns of growth and absolute size may differently reflect fledgling physiology, potentially leading to variable relationships between morphological traits and juvenile fitness.
Sleep loss impairs cognitive function, immunological responses, and general well-being in humans. However, sleep requirements in mammals and birds vary dramatically. In circumpolar regions with continuous summer light, daily sleep duration is reduced, particularly in breeding birds. The effect of an anti-narcolepsy drug (modafinil) to putatively extend wakefulness was examined in two species of closely-related arctic-breeding passerine birds: Lapland longspurs (Calcarius lapponicus) and snow buntings (Plectrophenax nivalis). Free-living adult males were implanted during the nestling phase on day 4 (D4; 4 days post-hatch) with osmotic pumps containing either vehicle or modafinil to extend the active period for 72 h. Nestlings were weighed on D2 and D7 to measure growth rates. Additionally, focal observations were conducted on D6. Male longspurs receiving modafinil made fewer feeding visits and spent less time at the nest but tended to spend more time near the nest than controls. We observed no change in longspur nestling growth rates, but fledging occurred significantly later when males received modafinil, suggesting a fitness cost. In contrast, modafinil had no measurable impact on male or female snow bunting behavior, nestling growth rates, or time to fledge. We suggest male longspurs compromise and maintain vigilance at their nests in lieu of sleeping due to increased predation risk that is characteristic of their tundra nesting habitat. Snow buntings are cavity nesters, and their nests do not require the same vigilance, allowing males to presumably rest following provisioning. These life-history differences between species highlight the role of predation risk in mediating behavioral modifications to prolonged wakefulness in arctic-breeding songbirds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.