Tropical savannas are a globally extensive biome prone to rapid vegetation change in response to changing environmental conditions. Via a meta-analysis, we quantified savanna woody vegetation change spanning the last century. We found a global trend of woody encroachment that was established prior the 1980s. However, there is critical regional variation in the magnitude of encroachment. Woody cover is increasing most rapidly in the remaining uncleared savannas of South America, most likely due to fire suppression and land fragmentation. In contrast, Australia has experienced low rates of encroachment. When accounting for land use, African savannas have a mean rate annual woody cover increase two and a half times that of Australian savannas. In Africa, encroachment occurs across multiple land uses and is accelerating over time. In Africa and Australia, rising atmospheric CO , changing land management and rainfall are likely causes. We argue that the functional traits of each woody flora, specifically the N-fixing ability and architecture of woody plants, are critical to predicting encroachment over the next century and that African savannas are at high risk of widespread vegetation change.
Forest and savanna biomes dominate the tropics, yet factors controlling their distribution remain poorly understood. Climate is clearly important, but extensive savannas in some high rainfall areas suggest a decoupling of climate and vegetation. In some situations edaphic factors are important, with forest often associated with high nutrient availability. Fire also plays a key role in limiting forest, with fire exclusion often causing a switch from savanna to forest. These observations can be captured by a broad conceptual model with two components: (1) forest and savanna are alternative stable states, maintained by tree cover-fire feedbacks, (2) the interaction between tree growth rates and fire frequency limits forest development; any factor that increases growth (e.g. elevated availability of water, nutrients, CO 2 ), or decreases fire frequency, will favour canopy closure. This model is consistent with the range of environmental variables correlated with forest distribution, and with the current trend of forest expansion, likely driven by increasing CO 2 concentrations. Resolving the drivers of forest and savanna distribution has moved beyond simple correlative studies that are unlikely to establish ultimate causation. Experiments using Dynamic Global Vegetation Models, parameterised with measurements from each continent, provide an important tool for understanding the controls of these systems.
The 2019/20 Black Summer bushfire disaster in southeast Australia was unprecedented: the extensive area of forest burnt, the radiative power of the fires, and the extraordinary number of fires that developed into extreme pyroconvective events were all unmatched in the historical record. Australia’s hottest and driest year on record, 2019, was characterised by exceptionally dry fuel loads that primed the landscape to burn when exposed to dangerous fire weather and ignition. The combination of climate variability and long-term climate trends generated the climate extremes experienced in 2019, and the compounding effects of two or more modes of climate variability in their fire-promoting phases (as occurred in 2019) has historically increased the chances of large forest fires occurring in southeast Australia. Palaeoclimate evidence also demonstrates that fire-promoting phases of tropical Pacific and Indian ocean variability are now unusually frequent compared with natural variability in pre-industrial times. Indicators of forest fire danger in southeast Australia have already emerged outside of the range of historical experience, suggesting that projections made more than a decade ago that increases in climate-driven fire risk would be detectable by 2020, have indeed eventuated. The multiple climate change contributors to fire risk in southeast Australia, as well as the observed non-linear escalation of fire extent and intensity, raise the likelihood that fire events may continue to rapidly intensify in the future. Improving local and national adaptation measures while also pursuing ambitious global climate change mitigation efforts would provide the best strategy for limiting further increases in fire risk in southeast Australia.
Abstract. To recruit to reproductive size in fire-prone savannas, juvenile trees must avoid stem mortality (topkill) by fire. Theory suggests they either grow tall, raising apical buds above the flames, or wide, buffering the stem from fire. However, growing tall or wide is of no advantage without stem protection from fire. In Litchfield National Park, northern Australia, we explored the importance of bark thickness to stem survival following fire in a eucalypt-dominated tropical savanna. We measured bark thickness, prefire height, stem diameter and resprouting responses of small stems under conditions of low to moderate fire intensity. Fire induced mortality was low (,10%), topkill was uncommon (,11% of 5 m to 37% of 1 m tall stems) and epicormic resprouting was common. Topkill was correlated only with absolute bark thickness and not with stem height or width. Thus, observed height and diameter growth responses of small stems are likely different pathways to achieving bark thick enough to protect buds and the vascular cambium. Juvenile height was traded off against the cost of thick bark, so that wide stems were short with thicker bark for a given height. The fire resilience threshold for bark thickness differed between tall (4-5 mm) and wide individuals (8-9 mm), yet tall stems had lower P Topkill for a given bark thickness. Trends in P Topkill reflected eucalypt versus non-eucalypt differences. Eucalypts had thinner bark than non-eucalypts but lower P Topkill . With deeply embedded epicormic buds eucalypts do not need thick bark to protect buds and can allocate resources to height growth. Our data suggest the only 'strategy' for avoiding topkill in fireprone systems is to optimise bark thickness to maximise stem bud and cambium protection. Thus, escape height is the height at which bark protects the stem and a wide stem per se is insufficient protection from fire without thick bark. Consequently, absolute bark thickness is crucial to explanations of species differences in topkill, resprouting response and tree community composition in fire-prone savannas. Bark thickness and the associated mechanism of bud protection offer a proximate explanation for the dominance of eucalypts in Australian tropical savannas.
Aim Comparative analyses of fire regimes at large geographical scales can potentially identify ecological and climatic controls of fire. Here we describe Australia's broad fire regimes, and explore interrelationships and trade-offs between fire regime components. We postulate that fire regime patterns will be governed by trade-offs between moisture, productivity, fire frequency and fire intensity.Location Australia. MethodsWe reclassified a vegetation map of Australia, defining classes based on typical fuel and fire types. Classes were intersected with a climate classification to derive a map of 'fire regime niches'. Using expert elicitation and a literature search, we validated each niche and characterized typical and extreme fire intensities and return intervals. Satellite-derived active fire detections were used to determine seasonal patterns of fire activity.Results Fire regime characteristics are closely related to the latitudinal gradient in summer monsoon activity. Frequent low-intensity fires occur in the monsoonal north, and infrequent, high-intensity fires in the temperate south, demonstrating a trade-off between frequency and intensity: that is, very highintensity fires are only associated with very low-frequency fire regimes in the high biomass eucalypt forests of southern Australia. While these forests occasionally experience extremely intense fires (> 50,000 kW m À1 ), such regimes are exceptional, with most of the continent dominated by grass fuels, typically burning with lower intensity (< 5000 kW m À1 ).Main conclusions Australia's fire regimes exhibit a coherent pattern of frequent, grass-fuelled fires in many differing vegetation types. While eucalypts are a quintessential Australian entity, their contribution as a dominant driver of high-intensity fire regimes, via their litter and bark fuels, is restricted to the forests of the continent's southern and eastern extremities. Our analysis suggests that the foremost driver of fire regimes at the continental scale is not productivity, as postulated conceptually, but the latitudinal gradient in summer monsoon rainfall activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.