a b s t r a c tThe mechanical properties of a polymer composite plastic bonded explosive, EDC37, have been investigated as a function of hydrostatic confining pressure between 0.1 and 138 MPa. The results indicate different failure processes in two pressure ranges, a low pressure range between about 0.1 and 7 MPa and a higher pressure range between about 7 and 138 MPa. In the low pressure range slow crack processes are important in failure while in the higher pressure range plastic flow dominates. The pressure dependence of the compressive strength in the low pressure range is attributed to coulomb friction between surfaces of closed shear cracks and from the observed linear increase of the strength with pressure and the angle of the fracture plane a friction coefficient is obtained. Friction coefficients can also be obtained from the ratio of the compressive to tensile strength and directly from the above angle. The friction coefficients obtained from these separate observations are in agreement and this is taken as strong evidence for the importance of this friction in determining strength and mechanical failure. These results clearly establish experimentally the role of friction in determining strength with or without applied pressure. An empirical relationship between strength, pressure and strain rate is also obtained for this pressure range and the failure strength of EDC37 is more sensitive to pressure than strain rate.Published by Elsevier Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.