The numbers of novel coronavirus cases continue to grow at an unprecedented rate across the world. Attempts to control the growth of the virus using masks and social-distancing, and, recently, double-masking as well, continue to be difficult to maintain, in part due to the extent of asymptomatic cases. Analyses of large datasets consisting of 219,075 individual cases in Ontario, indicated that asymptomatic and pre-symptomatic cases are substantial in number. Large numbers of cases in children aged 0–9 were asymptomatic or had only one symptom (35.0% and 31.4% of total cases, respectively) and resulted in fever as the most common symptom (30.6% of total cases). COVID-19 cases in children were more likely to be milder symptomatic with cough not seen as frequently as in adults aged over 40, and past research has shown children to be index cases in familial clusters. These findings highlight the importance of targeting asymptomatic and mild infections in the continuing effort to control the spread of COVID-19. The Pearson correlation coefficient between test positivity rates and asymptomatic rates of −0.729 indicates that estimates of the asymptomatic rates should be obtained when the test positivity rates are lowest as the best approach.
The Severe Acute Respiratory Syndrome Coronavirus 2 pandemic has challenged medical systems to the brink of collapse around the globe. In this paper, logistic regression and three other artificial intelligence models (XGBoost, Artificial Neural Network and Random Forest) are described and used to predict mortality risk of individual patients. The database is based on census data for the designated area and co-morbidities obtained using data from the Ontario Health Data Platform. The dataset consisted of more than 280,000 COVID-19 cases in Ontario for a wide-range of age groups; 0–9, 10–19, 20–29, 30–39, 40–49, 50–59, 60–69, 70–79, 80–89, and 90+. Findings resulting from using logistic regression, XGBoost, Artificial Neural Network and Random Forest, all demonstrate excellent discrimination (area under the curve for all models exceeded 0.948 with the best performance being 0.956 for an XGBoost model). Based on SHapley Additive exPlanations values, the importance of 24 variables are identified, and the findings indicated the highest importance variables are, in order of importance, age, date of test, sex, and presence/absence of chronic dementia. The findings from this study allow the identification of out-patients who are likely to deteriorate into severe cases, allowing medical professionals to make decisions on timely treatments. Furthermore, the methodology and results may be extended to other public health regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.