The influence of implanted hydrogen (up to a concentration level of 3 at. %) on the microstructure of silicon (Si) materials is investigated by Fourier transform infrared spectroscopy as well as by effusion of hydrogen and of (low dose) implanted helium. Three materials of low original hydrogen concentration, crystalline Si, electron beam evaporated amorphous Si, and plasma-deposited hydrogenated amorphous Si (using high deposition temperature) were investigated. Significant differences between crystalline and amorphous materials were observed. In crystalline Si, implanted hydrogen is found to generate multivacancies that trap diffusing helium while this is not the case in amorphous Si. Accordingly, cavities where hydrogen is located in amorphous Si must be smaller than divacancies. Those cavities in amorphous Si, present from the growth process, that trap helium tend to disappear when the implanted hydrogen concentration increases. Annealing of the materials up to temperatures of 575°C was also studied. No significant change in the density of voids (trapping helium) occur but in case of crystalline Si the bonding sites of hydrogen as well as the diffusion paths of helium change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.