A high-entropy transition metal boride (Hf0.2 Ti0.2 Zr0.2 Ta0.2 Mo0.2)B2 sample was synthesized under high-pressure and high-temperature starting from ball-milled oxide precursors (HfO2, TiO2, ZrO2, Ta2O5, and MoO3) mixed with graphite and boron-carbide. Experiments were conducted in a large-volume Paris–Edinburgh press combined with in situ energy dispersive x-ray diffraction. The hexagonal AlB2 phase with an ambient pressure volume V0 = 27.93 ± 0.03 Å3 was synthesized at a pressure of 0.9 GPa and temperatures above 1373 K. High-pressure high-temperature studies on the synthesized high-entropy transition metal boride sample were performed up to 7.6 GPa and 1873 K. The thermal equation of state fitted to the experimental data resulted in an ambient pressure bulk-modulus K0 = 344 ± 39 GPa, dK/dT = −0.108 ± 0.027 GPa/K, and a temperature dependent volumetric thermal expansion coefficient α = α0 + α1T + α2 T−2. The thermal stability combined with a high bulk-modulus establishes this high-entropy transition metal boride as an ultrahard high-temperature ceramic material.
Microwave-induced plasma was used to anneal precursor powders containing five metal oxides with carbon and boron carbide as reducing agents, resulting in high entropy boride ceramics. Measurements of hardness, phase structure, and oxidation resistance were investigated. Plasma annealing for 45 min in the range of 1500–2000 °C led to the formation of predominantly single-phase (Hf, Zr, Ti, Ta, Mo)B2 or (Hf, Zr, Nb, Ta, Mo)B2 hexagonal structures characteristic of high entropy borides. Oxidation resistance for these borides was improved by as much as a factor of ten when compared to conventional commercial diborides. Vickers and nanoindentation hardness measurements show the indentation size effect and were found to be as much as 50% higher than that reported for the same high entropy boride configuration made by other methods, with average values reaching up to 38 GPa (for the highest Vickers load of 200 gf). Density functional theory calculations with a partial occupation method showed that (Hf, Zr, Ti, Ta, Mo)B2 has a higher hardness but a lower entropy forming ability compared to (Hf, Zr, Nb, Ta, Mo)B2, which agrees with the experiments. Overall, these results indicate the strong potential of using microwave-induced plasma as a novel approach for synthesizing high entropy borides.
A novel approach is demonstrated for the synthesis of the high entropy transition metal boride (Ta, Mo, Hf, Zr, Ti)B2 using a single heating step enabled by microwave-induced plasma. The argon-rich plasma allows rapid boro-carbothermal reduction of a consolidated powder mixture containing the five metal oxides, blended with graphite and boron carbide (B4C) as reducing agents. For plasma exposure as low as 1800 °C for 1 h, a single-phase hexagonal AlB2-type structure forms, with an average particle size of 165 nm and with uniform distribution of the five metal cations in the microstructure. In contrast to primarily convection-based (e.g., vacuum furnace) methods that typically require a thermal reduction step followed by conversion to the single high-entropy phase at elevated temperature, the microwave approach enables rapid heating rates and reduced processing time in a single heating step. The high-entropy phase purity improves significantly with the increasing of the ball milling time of the oxide precursors from two to eight hours. However, further improvement in phase purity was not observed as a result of increasing the microwave processing temperature from 1800 to 2000 °C (for fixed ball milling time). The benefits of microwave plasma heating, in terms of allowing the combination of boro-carbothermal reduction and high entropy single-phase formation in a single heating step, are expected to accelerate progress in the field of high entropy ceramic materials.
Metal oxide thermal reduction, enabled by microwave-induced plasma, was used to synthesize high entropy borides (HEBs). This approach capitalized on the ability of a microwave (MW) plasma source to efficiently transfer thermal energy to drive chemical reactions in an argon-rich plasma. A predominantly single-phase hexagonal AlB2-type structural characteristic of HEBs was obtained by boro/carbothermal reduction as well as by borothermal reduction. We compare the microstructural, mechanical, and oxidation resistance properties using the two different thermal reduction approaches (i.e., with and without carbon as a reducing agent). The plasma-annealed HEB (Hf0.2, Zr0.2, Ti0.2, Ta0.2, Mo0.2)B2 made via boro/carbothermal reduction resulted in a higher measured hardness (38 ± 4 GPa) compared to the same HEB made via borothermal reduction (28 ± 3 GPa). These hardness values were consistent with the theoretical value of ~33 GPa obtained by first-principles simulations using special quasi-random structures. Sample cross-sections were evaluated to examine the effects of the plasma on structural, compositional, and mechanical homogeneity throughout the HEB thickness. MW-plasma-produced HEBs synthesized with carbon exhibit a reduced porosity, higher density, and higher average hardness when compared to HEBs made without carbon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.