Although cell movements are vital for establishing the normal architecture of embryos, it is unclear how these movements are regulated during development in vertebrates. Inhibition of Xenopus Dishevelled (Xdsh) function disrupts convergent extension movements of cells during gastrulation, but the mechanism of this effect is unclear, as cell fates are not affected. In Drosophila, Dishevelled controls both cell fate and cell polarity, but whether Dishevelled is involved in controlling cell polarity in vertebrate embryos has not been investigated. Here we show, using time-lapse confocal microscopy, that the failure of cells lacking Xdsh function to undergo convergent extension results from defects in cell polarity. Furthermore, Xdsh mutations that inhibit convergent extension correspond to mutations in Drosophila Dishevelled that selectively perturb planar cell polarity. Finally, the localization of Xdsh at the membrane of normal dorsal mesodermal cells is consistent with Xdsh controlling cell polarity. Our results show that polarized cell behaviour is essential for convergent extension and is controlled by vertebrate Dishevelled. Thus, a vertebrate equivalent of the Drosophila planar cell polarity signalling cascade may be required for normal gastrulation.
We examined the spatial and temporal control of actin assembly in living Xenopus eggs. Within minutes of egg activation, dynamic actin-rich comet tails appeared on a subset of cytoplasmic vesicles that were enriched in protein kinase C (PKC), causing the vesicles to move through the cytoplasm. Actin comet tail formation in vivo was stimulated by the PKC activator phorbol myristate acetate (PMA), and this process could be reconstituted in a cell-free system. We used this system to define the characteristics that distinguish vesicles associated with actin comet tails from other vesicles in the extract. We found that the protein, N-WASP, was recruited to the surface of every vesicle associated with an actin comet tail, suggesting that vesicle movement results from actin assembly nucleated by the Arp2/3 complex, the immediate downstream target of N-WASP. The motile vesicles accumulated the dye acridine orange, a marker for endosomes and lysosomes. Furthermore, vesicles associated with actin comet tails had the morphological features of multivesicular endosomes as revealed by electron microscopy. Endosomes and lysosomes from mammalian cells preferentially nucleated actin assembly and moved in the Xenopus egg extract system. These results define endosomes and lysosomes as recruitment sites for the actin nucleation machinery and demonstrate that actin assembly contributes to organelle movement. Conversely, by nucleating actin assembly, intracellular membranes may contribute to the dynamic organization of the actin cytoskeleton.
Eggs of Xenopus laevis undergo a postfertilization cortical rotation that specifies the position of the dorso-ventral axis and activates a transplantable dorsal-determining activity in dorsal blastomeres by the 32-cell stage. There have heretofore been no reported dorso-ventral asymmetries in endogenous signaling proteins that may be involved in this dorsal-determining activity during early cleavage stages. We focused on β-catenin as a candidate for an asymmetrically localized dorsal-determining factor since it is both necessary and sufficient for dorsal axis formation. We report that β-catenin displays greater cytoplasmic accumulation on the future dorsal side of the Xenopus embryo by the two-cell stage. This asymmetry persists and increases through early cleavage stages, with β-catenin accumulating in dorsal but not ventral nuclei by the 16- to 32cell stages. We then investigated which potential signaling factors and pathways are capable of modulating the steady-state levels of endogenous β-catenin. Steadystate levels and nuclear accumulation of β-catenin increased in response to ectopic Xenopus Wnt-8 (Xwnt-8) and to the inhibition of glycogen synthase kinase-3, whereas neither Xwnt-5A, BVg1, nor noggin increased β-catenin levels before the mid-blastula stage. As greater levels and nuclear accumulation of β-catenin on the future dorsal side of the embryo correlate with the induction of specific dorsal genes, our data suggest that early asymmetries in β-catenin presage and may specify dorso-ventral differences in gene expression and cell fate. Our data further support the hypothesis that these dorso-ventral differences in β-catenin arise in response to the postfertilization activation of a signaling pathway that involves Xenopus glycogen synthase kinase-3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.