A modular, 18-step total synthesis of hyperforin is described. The natural product was quickly accessed using latent symmetry elements, whereby a group-selective, Lewis acid-catalyzed epoxide-opening cascade cyclization was used to furnish the bicyclo[3.3.1]nonane core and set two key quaternary stereocenters.
Because of its strong genetic validation, Na1.7 has attracted significant interest as a target for the treatment of pain. We have previously reported on a number of structurally distinct bicyclic heteroarylsulfonamides as Na1.7 inhibitors that demonstrate high levels of selectivity over other Na isoforms. Herein, we report the discovery and optimization of a series of atropisomeric quinolinone sulfonamide inhibitors [ Bicyclic sulfonamide compounds as sodium channel inhibitors and their preparation . WO 2014201206, 2014 ] of Na1.7, which demonstrate nanomolar inhibition of Na1.7 and exhibit high levels of selectivity over other sodium channel isoforms. After optimization of metabolic and pharmacokinetic properties, including PXR activation, CYP2C9 inhibition, and CYP3A4 TDI, several compounds were advanced into in vivo target engagement and efficacy models. When tested in mice, compound 39 (AM-0466) demonstrated robust pharmacodynamic activity in a Na1.7-dependent model of histamine-induced pruritus (itch) and additionally in a capsaicin-induced nociception model of pain without any confounding effect in open-field activity.
Decarboxylative coupling of carboxylic acids with activated olefins has been accomplished using visible light photoredox catalysis. The strategic placement of a radical-stabilizing aromatic group at the β-position of the olefin component biases the regioselectivity of the addition, allowing reliable, facile access to anti-Michael-type products from readily available precursors. The scope of this methodology was demonstrated with a range of carboxylic acids and appropriately substituted olefins and was applied toward a two-step synthesis of the antiarrhythmic agent encainide.
A general strategy for the synthesis of polycyclic polyprenylated acylphloroglucinols is described in which a scalable, Lewis acid catalyzed epoxide-opening cascade cyclization is used to furnish common intermediate 4. The utility of this approach is exemplified by the total syntheses of both ent-nemorosone and (+)-secohyperforin, which were each accomplished in four steps from this intermediate.
With the development of ever-expanding synthetic methodologies, a medicinal chemist's toolkit continues to swell. However, with finite time and resources as well as a growing understanding of our field's environment impact, it is critical to refine what can be made to what should be made. This review seeks to highlight multiple cheminformatic approaches in drug discovery that can influence and triage design and execution impacting the likelihood of rapidly generating high-value molecules in a more sustainable manner. This strategy gives chemists the tools to design and refine vast libraries, stress "druglikeness", and rapidly identify SAR trends. Project success, i.e., identification of a clinical candidate, is then reached faster with fewer molecules with the farther-reaching ramification of using fewer resources and generating less waste, thereby helping "green" our field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.