A multispecies, subchronic, inhalation study comparing pulmonary responses to ultrafine titanium dioxide (uf-TiO(2)) was performed. Female rats, mice, and hamsters were exposed to aerosol concentrations of 0.5, 2.0, or 10 mg/m(3) uf-TiO(2) particles for 6 h/day, 5 days/week, for 13 weeks. Following the exposure period, animals were held for recovery periods of 4, 13, 26, or 52 weeks (49 weeks for the uf-TiO(2)-exposed hamsters) and, at each time point, uf-TiO(2) burdens in the lung and lymph nodes and selected lung responses were examined. The responses studied were chosen to assess a variety of pulmonary parameters, including inflammation, cytotoxicity, lung cell proliferation, and histopathological alterations. Retained lung burdens increased in a dose-dependent manner in all three species and were at a maximum at the end of exposures. Mice and rats had similar retained lung burdens at the end of the exposures when expressed as mg uf-TiO(2)/mg dry lung, whereas hamsters had retained lung burdens that were significantly lower. Lung burdens in all three species decreased with time after exposure, and, at the end of the recovery period, the percentage of the lung particle burden remaining in the 10 mg/m(3) group was 57, 45, and 3% for rat, mouse, and hamster, respectively. The retardation of particle clearance from the lungs in mice and rats of the 10 mg/m(3) group indicated that pulmonary particle overload had been achieved in these animals. Pulmonary inflammation in rats and mice exposed to 10 mg/m(3) was evidenced by increased numbers of macrophages and neutrophils and increased concentrations of soluble markers in bronchoalveolar lavage fluid (BALF). The initial neutrophil response in rats was greater than in mice, whereas the relative increase of macrophages was less than in mice. The neutrophilic response of rats, but not mice, declined in a time-dependent manner correlating with declining lung burdens; however, the fraction of recovered neutrophils at 52 weeks postexposure was equivalent in the two species. Consistent increases in soluble indicators of toxicity in the BALF (LDH and protein) occurred principally in rats and mice exposed to 10 mg/m(3) and diminished with time postexposure. There were no significant changes in cellular response or with markers indicating toxicity in hamsters, reflecting the capacity of these animals to rapidly clear particles from the lung. Progressive epithelial and fibroproliferative changes were observed in rats of the 10 mg/m(3) group. These lesions consisted of foci of alveolar epithelial proliferation of metaplastic epithelial cells (so-called alveolar bronchiolization) circumscribing aggregated foci of heavily particle-laden macrophages. The observed epithelial proliferative changes were also manifested in rats as an increase in alveolar epithelial cell labeling in cell proliferation studies. Associated with these foci of epithelial proliferation were interstitial particle accumulation and alveolar septal fibrosis. These lesions became more pronounced with increasing ti...
Summary Carbon nanotubes have fibre-like shape1 and stimulate inflammation at the surface of the peritoneum when injected into the abdominal cavity of mice2, raising concerns that inhaled nanotubes3 may cause pleural fibrosis and/or mesothelioma4. Here we show that multi-walled carbon nanotubes reach the sub-pleura in mice after a single inhalation exposure of 30 mg/m3 for 6 hours. Nanotubes were embedded in the sub-pleural wall and within sub-pleural macrophages. Mononuclear cell aggregates on the pleural surface increased in number and size after 1 day and nanotube-containing macrophages were observed within these foci. Sub-pleural fibrosis increased after 2 and 6 weeks following inhalation. None of these effects were seen in mice that inhaled carbon black nanoparticles or a lower dose of nanotubes (1 mg/m3). This work advances a growing literature on pulmonary toxicology of nanotubes5 and suggests that minimizing inhalation of nanotubes during handling is prudent until further long term assessments are conducted.
Carbon nanotubes are gaining increasing attention due to possible health risks from occupational or environmental exposures. This study tested the hypothesis that inhaled multiwalled carbon nanotubes (MWCNT) would increase airway fibrosis in mice with allergic asthma. Normal and ovalbumin-sensitized mice were exposed to a MWCNT aerosol (100 mg/m(3)) or saline aerosol for 6 hours. Lung injury, inflammation, and fibrosis were examined by histopathology, clinical chemistry, ELISA, or RT-PCR for cytokines/chemokines, growth factors, and collagen at 1 and 14 days after inhalation. Inhaled MWCNT were distributed throughout the lung and found in macrophages by light microscopy, but were also evident in epithelial cells by electron microscopy. Quantitative morphometry showed significant airway fibrosis at 14 days in mice that received a combination of ovalbumin and MWCNT, but not in mice that received ovalbumin or MWCNT only. Ovalbumin-sensitized mice that did not inhale MWCNT had elevated levels IL-13 and transforming growth factor (TGF)-beta1 in lung lavage fluid, but not platelet-derived growth factor (PDGF)-AA. In contrast, unsensitized mice that inhaled MWCNT had elevated PDGF-AA, but not increased levels of TGF-beta1 and IL-13. This suggested that airway fibrosis resulting from combined ovalbumin sensitization and MWCNT inhalation requires PDGF, a potent fibroblast mitogen, and TGF-beta1, which stimulates collagen production. Combined ovalbumin sensitization and MWCNT inhalation also synergistically increased IL-5 mRNA levels, which could further contribute to airway fibrosis. These data indicate that inhaled MWCNT require pre-existing inflammation to cause airway fibrosis. Our findings suggest that individuals with pre-existing allergic inflammation may be susceptible to airway fibrosis from inhaled MWCNT.
Information on the depo sition efficiency of aerosol particles in the nasal airways is used for optimizing the delivery of therapeutic aero sols into the nose and for risk assessment of toxic airborne pollutants inhaled through the nose into the respiratory system. Nasal particle depo sition is often studied using plastic replicas of nasal airways. Deposition efficiency in a nasal replica manufactu red by stereolithography has not been reported to date. We determined the inertial particle deposition efficiency of two replicas of the same nasal airways manufactured by different stereolithograph y machines and compared results with deposition efficiencies reported for models manufactured by other techniques from the same magnetic resonance imaging scans. Deposition in the replicas was measured for particles of aerodynamic diameter between 1 and 10 JLm and constant inspiratory flow rates ranging from 20-40 Ipm. Deposition efficiency of the replica s increased from nea rly 0-100 % with increasing particle inertia. For a range of particl e inertias, particle depo sition in the replica made with a higher resolution stereolithography machine was slightl y less th an in the replica mad e with a lower resolution stereolithography process. Th ese dat a showed lower deposition efficiency when compared with other deposition studies in nasal replicas based on the same magnetic resonance ima ging data. The differences in deposition efficiency can be attributed in part to differences in methods used to manufacture the replicas. There was little or no difference in deposition du e to cutti ng tool size, some difference due to the use
Female mice, rats, and hamsters were exposed to 10, 50, or 250 mg/m(3) pigmentary titanium dioxide (p-TiO(2)) particles for 6 h per day and 5 days per week for 13 weeks with recovery groups held for an additional 4, 13, 26, or 52 weeks postexposure (46 weeks for the p-TiO(2)-exposed hamsters). At each time point p-TiO(2) burdens in the lung and lymph nodes and selected lung responses were examined. The responses studied were chosen to assess a variety of pulmonary parameters, including inflammation, cytotoxicity, lung cell proliferation, and histopathologic alterations. Burdens of p-TiO(2) in the lungs and in the lung-associated lymph nodes increased in a concentration-dependent manner. Retained lung burdens following exposure were greatest in mice. Rats and hamsters had similar lung burdens immediately postexposure when assessed as milligrams of p-TiO(2) per gram of dried lung. Particle retention data suggested that pulmonary overload was achieved in both rats and mice at the exposure levels of 50 and 250 mg/m(3). Under the conditions of the present study, hamsters were better able to clear p-TiO(2) particles than were similarly exposed mice and rats. Pulmonary histopathology revealed both species and concentration-dependent differences in p-TiO(2) particle retention patterns. Inflammation was noted in all three species at 50 and 250 mg/m(3), as evidenced by increases in macrophage and neutrophil numbers and in soluble indices of inflammation in bronchoalveolar lavage fluid (BALF; rats > mice, hamsters). In mice and rats, the BALF inflammatory responses remained elevated relative to controls throughout the entire postexposure recovery period in the most highly exposed animals. In comparison, inflammation in hamsters eventually disappeared, even at the highest exposure dose, due to the more rapid clearance of particles from the lung. Pulmonary lesions were most severe in rats, where progressive epithelial- and fibroproliferative changes were observed in the 250 mg/m(3) group. These epithelial proliferative changes were also manifested in rats as an increase in alveolar epithelial cell labeling in cell proliferation studies. Associated with these foci of epithelial proliferation were interstitial particle accumulation and alveolar septal fibrosis. In summary, there were significant species differences in pulmonary responses to inhaled p-TiO(2) particles. Under conditions in which the lung p-TiO(2) burdens were similar and likely to induce pulmonary overload, rats developed a more severe and persistent pulmonary inflammatory response than either mice or hamsters. Rats also were unique in the development of progressive fibroproliferative lesions and alveolar epithelial metaplasia in response to 90 days of exposure to a high concentration of p-TiO(2) particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.